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ABSTRACT
Deep reinforcement learning (deep RL) has achieved superior per-
formance in complex sequential tasks by using a deep neural net-
work as its function approximator and by learning directly from
raw images. A drawback of using raw images is that deep RL must
learn the state feature representation from the raw images in ad-
dition to learning a policy. As a result, deep RL often requires a
prohibitively large amount of training time and data to reach rea-
sonable performance, making it inapplicable in real-world settings,
particularly when data is expensive. In this work, we speed up
training by addressing half of what deep RL is trying to solve —
feature learning. We show that using a small set of non-expert
human demonstrations during a supervised pre-training stage al-
lows significant improvements in training times. We empirically
evaluate our approach using the deep Q-network and the asynchro-
nous advantage actor-critic algorithms in the Atari 2600 games of
Pong, Freeway, and Beamrider. Our results show that pre-training
a deep RL network provides a significant improvement in train-
ing time, even when pre-training from a small number of noisy
demonstrations.
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1 INTRODUCTION
The recent resurgence of neural networks in reinforcement learning
(RL) can be attributed to the widespread success of Deep Reinforce-
ment Learning (deep RL), which uses deep neural networks for
function approximation [15, 16]. One of the most impressive ac-
complishments of deep RL is its ability to learn directly from raw
images, achieving state-of-the-art results. However, in order to
bring the success of deep RL from virtual environments to real-
world applications, we must address the lengthy training time that
is required to learn a policy.

Deep RL suffers from poor initial performance like classic RL
algorithms since it learns tabula rasa [19]. In addition, deep RL
inherently takes longer to learn because besides learning a policy it
also learns a state directly from raw images — instead of using
hand-engineered features, deep RL needs to learn to construct
relevant high-level features from raw images. These problems are
consequential in real-world applications with expensive data, such
as in robotics, finance, or medicine.

Leveraging humans to provide demonstrations is one method to
speed up deep RL. Using human demonstrations in RL is not new

[3] but only recently has this area gained traction as a possible way
of speeding up deep RL [11, 13, 20].

Speeding up deep reinforcement learning can be achieved by ad-
dressing the two problems it is trying to tackle: 1) feature learning
and 2) policy learning. In this work, we will focus only on address-
ing the problem of feature learning by pre-training to learn the
underlying features in the hidden layers of the network. We show
that by learning better features, an RL agent can achieve better
performance without changing its policy learning strategies thus
addressing the importance and usefulness of learning good features
in an RL problem. We apply a common technique to deep RL that
is widely used to speed up training in deep learning: pre-training a
network [8, 9, 24]. However, the success of this technique in deep
supervised learning is attributed to the large datasets that are avail-
able and used to pre-train networks. In deep RL, data are often
unavailable or difficult to collect.

In this work, we propose an approach to speed up deep rein-
forcement learning algorithms using only a relatively small amount
of non-expert human demonstrations. This approach starts by
pre-training a deep neural network using human demonstrations
through supervised learning. Similar work has shown that this
step would learn to imitate the human demonstrator [3]. However,
in this context, pre-training through supervised learning would
implicitly learn the underlying features.

We test our approach with two popular deep RL algorithms, the
Deep Q-network (DQN) and the Asynchronous Advantage Actor-
Critic (A3C), and evaluate its performance in the Atari 2600 games
of Pong, Freeway, and Beamrider [4]. Our results show speed ups
in five of the six cases. The improvements in Pong and Freeway
were quite large in DQN, and A3C’s improvement on Pong was
especially large. The generality of this approach means that it can
be easily incorporated into multiple deep RL algorithms.

2 RELATEDWORK
Our work is not precisely transfer learning, but it is similar to one of
the existing transfer learning methods in deep learning. In training
deep neural networks for image classification, Yosinski et al. [24]
have shown how transferring the features learned from existing
models allow new models to learn faster, particularly when the
datasets are similar. In this work, we use a deep learning classifier
as the source network to initialize the RL agent’s network.

Existing work on pre-training in RL has shown learning can
be improved [1, 2]. However, their networks have a much smaller
number of parameters and state dynamics of the domain are used
as network input. In our approach, we use the raw images of the
domain as network input and also the RL agent needs to learn the
latent features while learning its policy.



Our approach of using supervised learning for pre-training is
also similar in spirit to that of Anderson et al. [2]. They pre-train
by learning to predict the state dynamics. We instead pre-train by
using the game’s image frames from the human demo as training
data, which are individually labeled by the action taken by the
human demonstrator. This setup is similar to how one could derive
a policy when learning from demonstration [3].

Another approach to pre-training is to learn the latent features
using unsupervised learning through Deep Belief Networks [1]. Al-
though this pre-training approach differs — it falls under a different
machine learning paradigm — its goals are similar to our approach
in that pre-trained networks learn better than randomly initialized
networks.

There are more recent works that leverage humans in deep RL.
Christiano et al. [7] use human feedback to learn a reward func-
tion. Hester et al. [11] similarly pre-train the network with human
demonstrations in DQN. However, their pre-training combines the
largemargin supervised loss and the temporal difference loss, which
tries to closely imitate the demonstrator. Our work differs in that
only the cross-entropy loss is used and we focus on the implicitly
learned features.

The work of Silver et al. [18] trained human demonstrations in
supervised learning and used the supervised learner’s network to
initialize RL’s policy network. They tested this approach in a single
domain and a huge amount of expert demonstration data was used
to train the supervised learner. Our work will be the first to provide
a comparative analysis as to how this approach impacts deep RL al-
gorithms and howwell this approach can complement existing deep
RL algorithms when human demonstrations are available. Silver et
al. [18] also focus on optimizing the policy learned from humans,
while our paper focuses on learning the underlying features. Our
work shows that: 1) using only a small set of demonstration data
is sufficient enough to gain performance improvements, and 2) a
supervised learner can still learn important latent features even
when demonstrated human data is from non-experts.

3 BACKGROUND: DEEP REINFORCEMENT
LEARNING

An RL problem is typically modeled using a Markov decision pro-
cess, represented by a 5-tuple ⟨S,A, P ,R,γ ⟩. An RL agent explores
an unknown environment by taking an action a ∈ A. Each action
leads the agent to a state s ∈ S . A reward r ∼ R(s,a, s ′) is given
based on the action the agent took and the next state s ′ it reaches.
The goal of an RL agent is to learn to maximize the expected re-
turn value Rt =

∑∞
k=0 γ

krt+k for each state at time t . The discount
factor γ ∈ (0, 1] determines the relative importance of future and
immediate rewards.

3.1 Deep Q-network
The first successful deep RL method, deep Q-network (DQN), learns
to play 49 Atari games directly from screen pixels by combin-
ing Q-learning with a deep convolutional neural network [16]. In
shallow Q-learning, an agent learns a state-action value function
Q∗(s,a) = Es ′[r + γ maxa′ Q∗(s ′,a′)|s,a], which is the expected
discounted reward determined by performing action a in state s
and thereafter performing optimally [23]. The optimal policy π∗

can be deduced by following actions that have the maximum Q
value, π∗ = arдmaxaQ

∗(s,a).
Directly computing the Q value is not feasible when the state

space is large or continuous (e.g., in Atari games). The DQN algo-
rithm uses a convolutional neural network as a function approxima-
tor to estimate the Q function Q(s,a;θ ) ≈ Q∗(s,a), where θ is the
network’s weight parameters. For each iteration i , DQN is trained
to minimize the mean-squared error (MSE) between the Q-network
and its target y = r + γmaxa′Q(s

′,a′;θ−i ), where θ
−
i is the weight

parameters for the target network that was generated from previ-
ous iterations. All rewards are clipped to 1 when positive, -1 when
negative, and 0 when unchanged. The loss function at iteration
i can be expressed as Li (θi ) = Es,a,r,s ′[(y − Q(s,a;θi ))2], where
{s,a, r , s ′} are state-action samples drawn from experience replay
memory with a minibatch of size 32. The use of a target network,
reward clipping, and an experience replay memory are essential to
stabilize learning. In addition, the ϵ-greedy policy is used by the
agent to obtain sufficient exploration of the state space.

3.2 Asynchronous Advantage Actor-critic
There are a few drawbacks of using experience replay memory in
theDQN algorithm. First, storing all experiences is space-consuming
and could slow down learning. Second, using replay memory limits
DQN to off-policy algorithms. The asynchronous advantage actor-
critic (A3C) algorithm was proposed to overcome these problems
[15].

A3C combines the actor-critic algorithm with deep RL. It dif-
fers from value-based algorithms (e.g., Q-learning) where only a
value function is learned — an actor-critic algorithm is policy-based
and maintains both a policy function π (at |st ;θ ) and a value func-
tion V (st ;θv ) [19]. The policy function is called the actor, which
takes actions based on the current policy π . The value function is
called the critic, which serves as a baseline to evaluate the qual-
ity of the action by returning the state value V π (st ;θt ) for the
current state under policy π . The policy is directly parameter-
ized and improved via policy-gradient. To reduce the variance in
policy gradient, an advantage function is used and calculated as
A(at , st ;θ ,θv ) =

∑k−1
i=0 γ

i tt+i + γ
kV (st+k ;θv ) − V (st ;θv ) at time

step t for action at at state st , where k is upper-bounded by n, the
number of steps used for n-step return update. The loss function
for A3C is L(θ ) = ∇θ logπ (at |st ;θ )A(at , st ;θ ,θv ).

In A3C, k actor-learners are running in parallel with their own
copies of the environment and the parameters for the policy and
value function. This enables exploration of different parts of the
environment and therefore observations will not be correlated.
This mimics the function of experience replay memory in DQN
while being more efficient in space and training time. Each actor-
learner performs a parameter update every tmax actions, or when
a terminal state is reached — this is similar to using mini-batches,
as is done in DQN. Updates are synchronized to a master learner
that maintains a central policy and value function, which will be
the final policy upon the completion of training.

4 PRE-TRAINING NETWORKS FOR DEEP RL
Deep reinforcement learning can be divided into two sub-tasks:
feature learning and policy learning. Deep RL in itself has already



succeeded in learning both tasks simultaneously. However, learning
both tasks also makes learning in deep RL very slow.We believe that
by addressing the feature learning task, deep RL agents can better
focus on learning the policy. We learn the features by pre-training
the network using human demonstrations from non-experts. We
assume here that humans provide correct labels through actions
demonstrated while playing the game.Wewill refer to our approach
as the pre-trained model.

We first apply the pre-trained model approach in DQN and refer
to it as the pre-trained model for DQN (PMfDQN). In PMfDQN,
we train a multiclass-classification deep neural network with a
softmax cross entropy loss function. The loss is minimized using
the Adam optimizer [12] with the following hyperparameters: step
size α = 0.0001, stability constant ϵ = 0.001, and Tensorflow’s
default exponential decay rates β . The network architecture for
the classification follows the same structure of the hidden layers
of DQN, which has three convolutional layers (conv1–conv3) and
one fully connected layer (fc1) [16]. The classifier’s output layer
has a single output for each valid action and is trained using the
cross-entropy loss instead of the TD loss. The learned weights and
biases from the classification model’s hidden layers are used to
initialize the DQN network, instead of random initialization. When
using all layers of the pre-trainedmodel (including the output layer),
normalization of the parameters of the output layer was necessary
to achieve a positive result. To normalize the output layer, we keep
track of the maximum value of the output layer during training,
which is used as a divisor to all the weights and biases during
initialization with the pre-trained model. Without normalization,
the values of the output layer tend to explode. We also load the
human demonstrations in the replay memory, thus removing the
need for DQN to take uniform random actions for 50,000 frames to
initially populate the replay memory [16].

The pre-trained model method can also be applied in A3C, which
we will refer to as the pre-trained model for A3C (PMfA3C). In
PMfA3C, we pre-train the multiclass-classifier using the same hy-
perparameters and optimization method as mentioned in PMfDQN
while experimenting with two different network structures. The
first network uses a structurewith three convolutional layers (conv1–
conv3) and one fully connected layer (fc1), but without the long
short-term memory (LSTM) cells [17]. The output layer is the
same as in PMfDQN. The second network is inspired by one-vs.-
all multiclass-classification and multitask learning [6]. It differs
from the first network as it uses multiple heads of output layers
where each class or action has its own output layer. Each individ-
ual output layer becomes a one-vs.-all classification. During each
training iteration, a uniform probability distribution is used to se-
lect which output layer to train. In each iteration, gradients are
backpropagated to the shared hidden layers of the network. In both
multiclass networks, only the hidden layers are used to initialize
A3C’s network.

Since DQN uses experience replay memory [14], it is also possi-
ble to pre-train just by loading the human demonstrations in the
replay memory. We refer to this experiment as pre-training in DQN
(PiDQN). While somewhat naive, this is still an interesting method
as it allows the DQN agent to learn both the features and policy
without any interaction with the actual Atari environment. How-
ever, this pre-training method does not generalize to A3C and/or

other deep RL algorithms that do not use a replay memory. We
would like to address this in future work by applying this naive ap-
proach to an alternative version of A3C that uses a replay memory
[21].

Lastly, we conducted additional experiments in DQN that com-
bines PMfDQN and PiDQN, with the goal of exploring whether a
combined approach would achieve a greater performance in DQN.

5 EXPERIMENTAL DESIGN
We test our approach in three Atari games: Pong, Freeway, and
Beamrider, as shown in Figure 1. The games have 6, 3, and 9 actions,
respectively. We use OpenAI Gym’s deterministic version of the
Atari 2600 environment with an action repeat of four [5].

Figure 1: Atari 2600 game screenshot of Pong, Freeway and
Beamrider, from left to right.

We use the same network architecture and hyperparameters for
DQN as was done in the original work [16]. For the LSTM-variant
of A3C, we follow the work of Sharma et al. [17] as their work
closely replicates the results of the original A3C algorithm [15].
However, note that there are two key differences from the original
A3C work. First, while using the same network architecture with
three convolutional layers, the fully connected layer was modified
to have 256 units (instead of 512) to connect with the 256 LSTM
cells that followed. Second, we use tmax = 20 instead of tmax = 5.
We use 16 actor-learner threads for all A3C experiments.

In both DQN and A3C, we use the four most recent game frames
as input to the network where each frame is pre-processed. We also
use the same evaluation technique for both DQN and A3C such that
the average reward over 125,000 steps was recorded. In addition,
DQN is evaluated using a ϵ-greedy action selection method, where
ϵ = .05. In A3C, it is evaluated as a stochastic policy where it uses
the output policy as action probabilities.

5.1 Collection of Human Demonstration
We are using OpenAI Gym’s keyboard interface to allow a human
demonstrator to interact with the Atari environment. The demon-
strator is provided with game rules and a set of valid actions with
their corresponding keyboard keys for each game. The action repeat
is set to one to provide smoother transitions of the games during
human play, whereas the action repeat is set to four during training
[15, 16]. During the demonstration, we collect every fourth frame
of the game, saving the game state using the game’s image, action
taken, reward received, and if the game’s current state is a terminal



Table 1: Summary of pre-training experiments.

Method Summary
PiDQN pre-train in DQN for 150,000 iterations, batch size of 32
PMfDQN initialize DQN with pre-trained model, pre-train for 150,000 iterations, batch size of 32
PMfDQN+PiDQN initialize DQN with pre-trained model and continue to pre-train in DQN
PMfDQN+PiDQN (ϵ = 0.1) low initial exploration rate
PMfDQN (random demo) pre-train model with random demonstrations
PMfDQN (no fc2) initialize with pre-trained model excluding output layer
PMfA3C initialize A3C with pre-trained model, pre-train for 150,000 iterations, batch size 32
PMfA3C (1-vs-all) pre-train model using one-vs-all multi-class classification, longer pre-training
PMfA3C (1-vs-all, 1-demo) pre-train model using only one out of the five demonstrated game play

Table 2: Human demonstration over five plays per game.

Game Worst Score Best Score # of Frames
Beamrider 2,160 3,406 11,205
Freeway 28 31 10,241
Pong -10 5 11,265

state. The format of the stored data follows the structure of the
experience replay memory used in DQN.

The non-expert human demonstrator plays five rounds for each
game. Each round has a maximum of five minutes of playing time.
The demonstration ends when the game reaches the time limit or
when game terminates — whichever comes first. Table 2 provides
a breakdown of human demonstration size for each game and the
human performance level.

6 RESULTS
This section presents and discusses results from pre-training deep
RL’s network for DQN and A3C.

6.1 DQN
Using PMfDQN, we trained one multiclass-classification network
for each Atari game with the human demonstration dataset. Each
training run was conducted using a batch size of 32 for 150,000 train-
ing iterations. The number of training iterations was determined
to be the shortest number of iterations where the training loss for
all games converges approximately to zero. The trained classifiers
provided us the pre-trained models which were then used to initial-
ize DQN’s network weights and biases. Figure 2 shows the results
that PMfDQN speeds up training in all three Atari games. We also
tested PiDQN with the same number of pre-training iterations as
in PMfDQN. PiDQN for Beamrider has shown some performance
improvement with an average total reward of 5,120 compared to
DQN’s average total reward of 4,894. However, PiDQN in Pong
and Freeway either follows a similar learning trajectory as DQN or
slightly worse. Our experiments show although naive pre-training
could provide speedups under some cases, supervised pre-training
is the essential component when using demonstrations.

To see if we can further improve DQN through pre-training,
we used PMfDQN followed by PiDQN with 150,000 pre-training
iterations each. Figure 2 shows the result for the combined method

(PMfDQN+PiDQN). This method showed a slight improvement
in playing Freeway but less improvement in Pong and Beamrider
when compared to only using PMfDQN. We found these results
surprising since we hypothesized that more improvement should
be expected with more pre-training. One possible reason for this
could be due to the high initial exploration rate ϵ = 1 in DQN at the
beginning of training. Under this setting, the agent would be taking
entirely random actions until the value of ϵ has decayed to a much
lower exploration rate. In the original DQN, ϵ is decayed over one
million steps, resulting in a replay memory with a good amount of
experiences executed through random action [16]. This may have
an adverse effect on what has already been learned from the pre-
training steps. Therefore, we instead initialized ϵ = 0.1 when using
the PMfDQN+PiDQN combined method. Results for the combined
method as shown in Figure 2 revealed that combining PMfDQN
with PiDQN using a low initial exploration rate was comparable
to PMfDQN by itself and was even better for Freeway. DQN’s
high initial exploration rate can be detrimental in costly real-world
applications. By using a small amount of human demonstration,
we can now minimize exploration without affecting agent’s overall
learning performance.

To measure improvement for each pre-training method, we com-
puted the average total reward for each trial and compared each
pre-training method against the DQN baseline. In PMfDQN, the av-
erage total reward was higher than the baseline in all three games,
although it was only statistically significant for Pong and Free-
way. However, the improvements in both PMfDQN+PiDQN and
PMfDQN+PiDQN (ϵ = 0.1) were statistically significant in all three
games as indicated by t-test with p < .05.

6.1.1 Ablation Studies. We consider twomodifications to PMfDQN
to further analyze its performance. In our first ablation study, we
replaced human demonstrations with random demonstrations. We
were interested in knowing how important it is to use human
demonstrations in comparison with using a random agent. We con-
ducted this experiment in Pong and the results in Figure 3 showed
that pre-training with random demonstrations was worse than the
DQN baseline. This experiment indicated that there was a need
for some level of competency from the demonstrator in order to
extract useful features during pre-training. However, even with
worse results, our approach appears to still converge to a policy
similar to baseline DQN.
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Figure 2: Performance evaluation of the ablation studies for
Pong using DQN. The results are the average testing score
over four trials where the shaded regions correspond to the
standard deviation.
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Figure 3: Performance evaluation on the ablation studies for
Pong using DQN. The results are the average testing score
over four trials where the shaded regions correspond to the
standard deviation.

In our second ablation study, we excluded the second fully con-
nected layer (fc2) (i.e., the output layer) when initializing the DQN
network with the pre-trained model. This will allow us to know
if supervised learning does learn important features, particularly
in the hidden layers. Empirically, when excluding the output layer,
results in Figure 3 showed that even though the initial jumpstart
was lost, the training time to reach convergence is not different
from the time when using all layers. This indicated that it was
actually the features in the hidden layers that provided most of
the improvement in the training speed. This was not surprising
since the output layer of a classifier was trying to learn to predict
what action to take given a state without any consideration for
maximizing the reward. Additionally, when learning from only a
small amount of data where human performance was relatively
poor (Table 2), the classifier’s policy would be far from optimal.

6.2 A3C
Using PMfA3C, we also pre-trained multiclass-classification net-
works for each Atari game with human demonstrations, similar to
what was done in PMfDQN with a batch of 32 for 150,000 train-
ing iterations. Since the network for the LSTM-variant of A3C
used LSTM cells with two output layers, we only initialize A3C’s
network with the pre-trained model’s hidden layers. In Figure 4,
results showed improvements in the training time in both Pong
and Beamrider, with a much higher improvement in Pong.

However, there was no improvement in Freeway. This waswithin
our expectation since the baseline performance of Freeway was
poor in the original A3C work [15] (shown in Figure 4 baseline).
We would like to emphasize that our approach focused on learning
features without addressing improvements in policy — no improve-
ments in Freeway with our approach were expected. Freeway in
A3C needs a better way of exploring states in order to learn a
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Figure 4: Performance of baseline and pre-training using
A3C. The x-axis is the number of training steps which is also
the number of visited game frames among all parallel work-
ers with frame skip. The y-axis is the average testing score
over four trials where the shaded regions correspond to the
standard deviation. Note that all PMfA3C experiments do
not use the output layer from the pre-trained model.

Table 3: Evaluation of the similarity of features for each hid-
den layer. The mean squared error (MSE) is computed be-
tween theweights from a randomly initialized A3C network
(baseline) and the final weights. Similarly, when using a pre-
trained model as the initial weights.

Layer MSE (Pong) MSE (Beamrider)
Baseline Pre-train Baseline Pre-train

conv1 1.03 × 10−2 3.94 × 10−3 3.32 × 10−2 2.53 × 10−2

conv2 8.02 × 10−3 8.00 × 10−4 8.50 × 10−3 4.35 × 10−3

conv3 7.13 × 10−3 3.26 × 10−4 7.11 × 10−3 2.39 × 10−3

fc1 9.57 × 10−4 7.54 × 10−5 1.07 × 10−3 3.29 × 10−4

near-optimal policy for the game. This is something we will try to
address in future work.

With strong improvements observed in A3C, can we still gain
further improvements if we pre-train our classification network
longer?We then tried longer training using the one-vs.-all multiclass-
classification network with shared hidden layers. Since each class
or action was trained independently, we can now observe the dif-
ferent convergence of the training loss for each class. This allowed
us to use the same technique of training until the training loss for
all classes was approximately zero. Using the one-vs.-all classifi-
cation, we pre-trained for 450,000 iterations in Pong and 650,000
iterations in Beamrider. Training longer resulted in a very large
improvement in pong and a slight improvement for Beamrider, as
shown in Figure 4.

The last experiment we conducted was to test whether important
features could still be learned even with a much smaller number of
demonstrations, in this case, a single round of the game that was
only five minutes of demonstration. We used one-vs.-all classifica-
tion network to pre-train for Pong with only 2,253 game frames
with 250,000 training iterations and similarly for Beamrider with
2,232 game frames with 300,000 training iterations. In Figure 4,
results for both Pong and Beamrider show improvement with only
this small number of demonstrations. It was even more remarkable
in Beamrider, as results were as good as pre-training with the full
set of the human demonstrations.

6.3 Additional Analysis
In order to understand what was accomplished with pre-training,
we looked closer at the weights of the network layers (i.e., filters) to
determine how much pre-trained features contributed to the final
features learned. Thus, we further investigated how similar the
initial weights θ̂ of a deep RL network were to its final weights θ
for each layer after learning a near-optimal policy. We can quantify
the similarity by finding the difference between the weights using
the mean squared error MSE = 1

n
∑n
i=1(θ̂i − θi )

2. Smaller MSE
indicates a higher similarity between layers. Table 3 shows that
there was a higher similarity in the pre-training approach compared
to random weight initialization. Furthermore, we looked at the
visualization of each hidden layer and observed that the weights
learned from classification and used as initial values in deep RL’s
network provided features that were retained even after training
in deep RL as shown in Figure 5.
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Figure 5: Visualization of the normalized weights on Pong’s first convolutional layer using PMfA3C. The weights (filters) are
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7 DISCUSSION AND CONCLUSION
The pre-training approach worked very well in Pong. This suc-
cess can be explained by the human demonstration data the classi-
fier was pre-trained with, and the simplicity of Pong environment.
Pong’s states are highly repetitive when compared to the other
game environments that are more dynamic. The Beamrider has the
most complex environments among all three games because it has
different levels of varying difficulty. Although Freeway’s game state
is also repetitive, A3C’s inability to learn a good policy is a problem
that leans more towards policy learning, which is not addressed in
our approach.

Human demonstrations are an essential part of the success of
our approach. It is important to understand how the demonstra-
tor’s performance and the amount of demonstration data affect the
benefits of pre-training in future work. Future work will consider
using recently released human demonstration datasets for Atari
[13] and Starcraft II [20].

Another issue that needs to be addressed in regards to the human
demonstrations is that they suffer from highly imbalanced classes
(actions). This is attributed to: 1) sparsity of some actions (e.g., the
torpedo action in Beamrider is limited to three uses at each level),
2) actions that are closely related (e.g., in Beamrider, there is a left
and right action plus combined actions of left-fire and right-fire —
a demonstrator would usually just use the native actions of left and
right action alone and use the fire action by itself), and 3) games
having a default no-operation action.

In a previous study, the authors show that the classifier will learn
a policy that tends to bias towards the majority classes when the
imbalance problem is not addressed [10]. It is interesting that the
classifier is still able to learn important features without handling
this issue. We see this as an interesting future work and hope

to explore if better features can be learned by handling the class
imbalance problem, therefore, leads to further improvements.

As we investigate further ways to improve our approach, we
know there is a limit to how much improvement pre-training can
provide without addressing policy learning. In our approach, we
have already trained a model with a policy that tries to imitate the
human demonstrator thus we can extend this work by using the
pre-trained model’s policy to provide advice to the agent (e.g., [22]).

Overall, learning a policy directly from raw images through deep
neural networks is a major factor why learning is slow in deep RL.
This paper has demonstrated that our method of initializing deep
RL’s network with a pre-trained model can significantly speed up
learning in deep RL.
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