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Abstract
A long-term goal of reinforcement learning agents is to be able to perform tasks in complex real-world scenarios. The use of 
external information is one way of scaling agents to more complex problems. However, there is a general lack of collabora-
tion or interoperability between different approaches using external information. In this work, while reviewing externally-
influenced methods, we propose a conceptual framework and taxonomy for assisted reinforcement learning, aimed at foster-
ing collaboration by classifying and comparing various methods that use external information in the learning process. The 
proposed taxonomy details the relationship between the external information source and the learner agent, highlighting the 
process of information decomposition, structure, retention, and how it can be used to influence agent learning. As well as 
reviewing state-of-the-art methods, we identify current streams of reinforcement learning that use external information in 
order to improve the agent’s performance and its decision-making process. These include heuristic reinforcement learning, 
interactive reinforcement learning, learning from demonstration, transfer learning, and learning from multiple sources, among 
others. These streams of reinforcement learning operate with the shared objective of scaffolding the learner agent. Lastly, 
we discuss further possibilities for future work in the field of assisted reinforcement learning systems.
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1  Introduction

Reinforcement learning (RL) (Sutton and Barto 2018) is a 
learning approach in which an agent uses sequential deci-
sions to interact with its environment trying to find a (near-) 
optimal policy to perform an intended task. RL agents have 
the ability to improve while operating, to learn without 
supervision, and to adapt to changing circumstances (Kael-
bling et al. 1996). By exploring, a standard agent learns 
solely from the signals it receives from the environment. 
The RL approach has shown success in domains such as 
robotics (Kitano et al. 1997; Kober et al. 2013; Cruz et al. 
2018c; Contreras et al. 2020), game-playing (Tesauro 1994; 
Barros et al. 2020), inventory management (Giannoccaro 
and Pontrandolfo 2002), and cloud computing (Shakarami 
et al. 2020; Shahidinejad and Ghobaei-Arani 2020; Ghobaei-
Arani et al. 2018), among others.

Like many machine learning techniques, RL faces the 
problem of high-dimensionality spaces. As environments 
become larger, the agent’s learning time increases and find-
ing the optimal solution becomes impractical (Cassandra 
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and Kaelbling 2016). Early research on this topic (Kaelbling 
et al. 1996; Lin 1991) argued that for RL to successfully 
scale into real-world scenarios, then the use of information 
external to the environment would be needed. Different RL 
strategies using this approach have emerged in order to speed 
up the learning process. They use external information to 
assist either the process of generalising the environment rep-
resentation (Price and Boutilier 2003), the agent’s decision-
making process (Griffith et al. 2013), or in providing more 
focused exploration (Fernández and Veloso 2006).

In this article, we refer to external information as any kind 
of information provided to the agent originating from out-
side of the agent’s representation of the environment. This 
may include demonstrations (Konidaris et al. 2012; Rozo 
et al. 2013; Chen et al. 2019), advice and critiques (Knox 
and Stone 2010; Griffith et al. 2013), initial bias based on 
previously gathered data (Taylor and Stone 2009), or highly-
detailed domain-specific shaping functions (Randløv and 
Alstrøm 1998). Additionally, in this work, we use indepen-
dently the concepts of RL approach, method, and technique 
to refer to the underlying learning algorithm. These concepts 
have been previously used mostly equally by the RL research 
community.

In this regard, we define Assisted reinforcement learn-
ing (ARL) as a range of techniques that use external infor-
mation, either before, during, or after training, to improve 
the performance of the learner agent, as well as to scale 
RL to larger and more complex scenarios. While a relevant 
characteristic of RL is its ability to endow agents with new 
skills from the ground up, ARL also makes use of exist-
ing information and/or previously learned behaviour. Some 
methods for improving the agent’s performance using exter-
nal information include: directly altering weights for actions 
and states (biasing) (Vlassis et al. 2012); altering the state 
or action space (Erez and Smart 2008); critiquing past or 
advising on future decision-making (Thomaz and Breazeal 
2007); dynamically altering reward functions (Knox and 
Stone 2010); directly modifying the policy (Griffith et al. 
2013); guiding exploration and action selection (Fernández 
and Veloso 2006); and, creating information repositories/
models to supplement the environmental information (Price 
and Boutilier 2003). Figure 1 captures all of these methods 
in a basic view of the ARL conceptual framework used in 
this work. The classic RL approach is shown within the fig-
ure where an agent performs an action on the environment 
reaching a new state and obtaining a reward. In ARL, the 
response of the environment is also shared with the external 
information source from where advice is given to the agent 
or changes sometimes made directly to the environment (Xu 
et al. 2020).

To date, many methods using external information have 
been proposed aiming to speed up the learning process for 
an autonomous agent (Arzate Cruz and Igarashi 2020; Lin 

et al. 2020; Da Silva et al. 2020b; Zhuang et al. 2020). Usu-
ally, they have been organized according to the technique 
employed, e.g., heuristic, interactive, or transfer learning, 
among others. Nevertheless, there is an important lack of 
understanding of how these techniques are related and what 
characteristics they share. Therefore, in this review, we pre-
sent a conceptual framework and a taxonomy to be used to 
describe the practice of using external information. A stand-
ardised ARL taxonomy will foster collaboration between 
different RL communities, improve comparability, allow a 
precise description of new approaches, and assist in identify-
ing and addressing key questions for further research.

2 � A conceptual framework for assisted 
reinforcement learning

In this section, we give more details about the ARL 
approach including some introductory examples of works 
in which external information sources have been used. 
Moreover, we define a conceptual framework identifying 
the different parts that comprise the underlying process 
used in ARL techniques. Based on this conceptual frame-
work, in the following section, we define a more detailed 
taxonomy for ARL approaches.

Fig. 1   Assisted reinforcement learning simplified framework. In 
autonomous reinforcement learning, an agent performs an action a

t
 

from a state s
t
 and the environment produces an answer leading the 

agent to a new state s
t+1

 and receiving a reward r
t+1

 . Assisted rein-
forcement learning adds an external information source, referred to as 
a trainer, teacher, advisor or assistant, that observes the environment 
and the agent in order to generate advice. The trainer may advise the 
learner agent or sometimes directly modify the environment. Moreo-
ver, the agent may also actively ask advice to the external information 
source
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2.1 � Assisted reinforcement learning

The main strength of RL is its ability for endowing an 
agent with new skills given no initial knowledge about 
the environment. With an appropriate reward function and 
enough interaction with its environment, an RL agent can 
learn (near-) optimal behaviour (Sutton and Barto 2018). 
The agent’s behaviour at every step is defined by its policy. 
The reward function promotes desirable behaviour and 
sometimes penalises undesirable behaviour. In the tradi-
tional view of RL, the reward function, and the rewards 
it produces, are internal to the environment (Kaelbling 
et al. 1996). Traditional RL, in which the environment 
is the sole provider of information to the agent, has been 
demonstrated to perform well in many different domains, 
especially when facing small and bounded problems (Sut-
ton and Barto 2018). However, RL has some difficulties 
when scaling up to large, unbounded environments, par-
ticularly regarding the time needed for the agent to learn 
the optimal policy (Cruz et al. 2016a, 2018b). In RL, one 
approach to tackling this issue is to use external informa-
tion to supplement the information that the environment 
provides (Suay and Chernova 2011; Millán et al. 2019).

Information is considered external if it originates from 
outside of the agent’s interactions with the environment. 
In this regard, internal information is determined solely 
through interactions and observations with the environ-
ment. For example, in the case of a human the internal 
information would be anything the person can observe 
from the environment using their senses (Niv 2009). The 
external information would be any information provided 
by peers, advisors, the internet, books, maps, and tutelage. 
In RL, anything external to the agent is usually consid-
ered part of the environment. In this regard, if an agent is 
learning in an environment, a person can be considered as 
part of it, therefore, the agent could model that person or 
communicate with them (Sert et al. 2020). Although it is 
possible that external sources of information could be just 
treated as part of the environment, this is handicapping the 
agent in an unnecessary way. There are external sources of 
information that might not necessarily be treated as part of 
the environment because they are socially advantaged. For 
instance, if an external source is providing action advice 
using directions as ‘left’ and ‘right’, the agent does not 
have to learn the meaning of these words from the ground 
up, or learn how to react to these instructions. Instead, 
we assume the agent knows that advice is coming, what 
it means, and how to use it. For example, if a person eats 
some berries and later becomes sick, the person may deter-
mine that those berries are poisonous. In this case, this 
would be internal information obtained by interaction with 
the environment. If instead, a peer had previously advised 
the person that eating those berries will make them sick, 

that would be external information provided by an extrin-
sic source.

In this work, we refer to methods using externally-influ-
enced agent learning as as assisted reinforcement learning. 
The ARL framework is defined to include any type of RL 
that uses external information to supplement agent learning 
and the decision-making process. Some common practices 
include the direct alteration of the agent’s understanding of 
the environment (Price and Boutilier 2003), focusing explora-
tion efforts through critique and advice (Thomaz and Breazeal 
2007), or assisting the agent in the decision-making pro-
cess (Fernández and Veloso 2006). For instance, existing ARL 
techniques include interactive reinforcement learning (Amer-
shi et al. 2014; Cruz et al. 2017), learning from demonstra-
tion (Argall et al. 2007; Nair et al. 2018), and transfer learn-
ing (Taylor and Stone 2009; Shao et al. 2018), among others.

The previously mentioned RL approaches are just exam-
ples of ARL methods that use external information to sup-
plement the agent’s decision-making process and learning. 
Additional details of these and other approaches and how 
they use an external information source to assist the agent 
(in terms of our ARL framework) are addressed in Section 4. 
The external information source is most commonly a human 
or another artificial agent. Regardless of the source, the use 
of external information has often been shown to improve 
an agent’s ability and learning speed. In the next section, 
we present a more detailed conceptual framework for ARL 
which is the base for the taxonomy we propose subsequently.

2.2 � Conceptual framework

The proposed ARL framework is built to improve the clas-
sification, the comparability, and the discussion on different 
externally-influenced RL methods. To achieve this aim, the 
framework has been designed using insights and observa-
tions drawn from many different ARL approaches. The result 
is a framework that can describe existing methods while 
also being flexible enough to include future research. The 
framework details are shown in Fig. 2.

The proposed ARL framework comprises four process-
ing components shown using red boxes in the diagram, i.e., 
information source, advice interpretation, external model, 
and the assisted agent itself. The external information source 
may not have perfect observability and also may not know 
details about the RL agent (algorithms, weights, hyper-
parameters, etc.), or make assumptions, e.g., value-based 
learners (Taylor et al. 2005). The processing components 
are responsible for providing, transforming, and storing 
information. We do include the agent as part of the pro-
cessing components since it is part of the RL process as 
well. However, an agent using ARL generally behaves as a 
traditional RL agent, i.e., it interacts with the environment 
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by exploring/exploiting actions. Inside the agent, there are 
three different stages: reward update, internal processing, 
and action selection. Each of those stages may be altered by 
the external model using reward/state modifications, internal 
modifications, or action modifications respectively. Moreo-
ver, the ARL framework also comprises three communi-
cation links that connect the four processing components 
and are labelled: temporality, advice structure, and agent 
modification. These links are shown between the processing 
components and represent the communication lines in Fig. 2 
that connect the processing components together. The com-
munication links convey information or denote constraints 
on the data such as where or when to provide information.

The ARL framework describes the transmission, modifi-
cation, and modality of sourced information. In this regard, 
we consider the ARL framework as a whole unit, comprising 
traditional autonomous RL plus the components and links 
for assistance. Thus, the taxonomy is a part of the frame-
work and oriented to describe the assisted learning section. 

Although the framework has been developed on how ARL 
is usually built, not all ARL approaches use all the proposed 
components and links. Below, we briefly describe each of 
the components and links of the framework. They are sub-
sequently used in the next section to describe in detail the 
proposed taxonomy.

–	 Information source: is the origin of the assistance being 
provided to the agent. The source may be a human, a 
repository, or another agent. There may be multiple infor-
mation sources providing assistance to an agent.

–	 Temporality: determines both the time at which infor-
mation is provided to the agent, and the frequency with 
which it is provided. Information may be provided, 
before, during, or after agent training, and occur multiple 
times through the learning process. Therefore, it is also 
responsible for how the information source communi-
cates temporal issues to the advice interpreter.

Fig. 2   Detailed view of the 
assisted reinforcement learn-
ing framework. The diagram 
includes four processing com-
ponents shown as dashed red 
boxes. Inside the assisted agent, 
one can observe three differ-
ent points where it can receive 
possible modifications from the 
external model. Additionally, 
three communication links are 
shown with underlined text. 
This framework is subsequently 
used to further discuss the 
proposed ARL taxonomy



A conceptual framework for externally‑influenced agents: an assisted reinforcement learning…

1 3

–	 Advice interpretation: denotes the process of transform-
ing incoming information into a format better suited for 
the agent. This may involve extracting key frames from 
video, converting audio samples to rewards, or mapping 
information to states.

–	 Advice structure: represents the structure of the advice 
after translation in a form suitable for the external model. 
Some approaches may not have an explicit external 
model, therefore, this structure might instead be directly 
used to modify the agent.

–	 External model: is responsible for retaining and relaying 
the information between the source and the agent. The 
model may retain the received information in the learning 
model, using it for later decisions, or it may discard the 
received information as soon as it has been used.

–	 Agent modification: denotes the approach that the agent 
uses to benefit from the incoming information. The most 
common modification approaches may use informa-
tion to alter the environmental reward signal or modify 
the agent’s behaviour or the decision-making process 
directly.

–	 Assisted Agent: is the RL agent receiving the external 
information or advice while learning a new task. The 
agent needs to work out how to incorporate the provided 
information with its own learning. If a different action is 
suggested by the trainer then the agent may decide if it 
should follow to that advice or not.

Figure 3 shows in a UML sequence diagram the interaction 
between the processing components and communication 
links according to Fig. 2.

3 � Assisted Reinforcement Learning 
Taxonomy

In this section, we describe the processing components and 
communication links included in the proposed framework 
within an ARL taxonomy1 and give more details of each 
of them. Figure 4 shows all the elements of the proposed 
ARL taxonomy including examples for each processing 
component and communication link. In the taxonomy, 
we include the agent as a component being the one that 
receives the advice. Each of the seven elements, i.e., pro-
cessing components and communication links, is described 
in detail in the following subsections. In our work, the con-
cept of taxonomy is used to classify the different elements 
within a class of problems, i.e., ARL problems. In this 
regard, our proposal is represented by a general ontology 

where the class is ARL, the properties are the processing 
components and the communication links, and the rela-
tions between the properties are as shown in Fig. 4.

Fig. 3   Relation between the processing components and the commu-
nication links as a UML sequence diagram

Fig. 4   The assisted reinforcement learning taxonomy. This figure 
shows the four processing components as dashed red boxes and the 
communication links as green parallelograms using underlined text. 
Examples for each component and method are included at the right

1  In this context, we refer the taxonomy as a classification of the dif-
ferent elements of the ARL framework, i.e., processing components 
and communication links, and not as a way to classify each ARL 
method.
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3.1 � Information source

The external information source is the main factor that sets 
ARL apart from traditional RL approaches. It is responsi-
ble for introducing new information about the task to the 
agent, supplementing or replacing the information the agent 
receives from the environment. The source is external to the 
agent and the environment, providing information that either 
the agent may not have had access to, or would have eventu-
ally learned itself. The information source may be able to 
observe the environment, the agent, or the agent’s decision-
making process. The objective of the information source is 
to assist the agent in achieving its goal faster.

There may be multiple information sources communicat-
ing with an agent. This may be humans, agents, other digital 
sources, or any combination of the three (Isbell et al. 2000). 
The use of multiple sources offers a wider range of available 
information to the agent. However, more complex modifica-
tion methods may be required to manage the information and 
handle conflicting advice (Kamar et al. 2012).

There are many examples of external information 
sources in current ARL literature, the most common of 
which are humans and additional reward functions (Ng 
et al. 1999; Thomaz et al. 2006a; Millán et al. 2019). For 
instance, RLfD and IntRL use human guidance to provide 
the agent with a generalised view of the solution (Cobo 
et al. 2014; Subramanian et al. 2016). Moreover, the use of 
additional reward functions is one of the earliest examples 
of ARL. In such cases, the designer of the agent encodes 
some further information about the environment or goal as 
an additional reward, supplementing the original reward 
given by the environment.

An example of the use of additional reward functions 
can be found in Randløv and Alstrøm’s bicycle experi-
ment (Randløv and Alstrøm 1998), in which, they teach an 
agent to ride a bicycle towards a goal point. Without addi-
tional assistance, the RL agent would only receive a reward 
upon reaching the termination state. Randløv and Alstrøm 
encoded some of their knowledge as a shaping reward signal 
external to the environment, providing the agent with addi-
tional rewards if it is cycling towards the goal point. In this 
scenario, the system designers acted as an external informa-
tion source, providing extra information to the RL agent. The 
use of this external information results in the agent learning 
the solution faster than using the traditional RL approach.

Some other information sources include behaviours from 
past experiences or other agents, repositories of labelled data 
or examples, or distribution tables for initialising/biasing 
agent behaviour (Cruz et al. 2017). Video, audio, and text 
sources may be used as well (Cruz et al. 2016b). However, 
these sources may require substantial amounts of interpreta-
tion and preprocessing to be of use.

The accuracy, availability, or consistency of the informa-
tion source can affect the maximum utility of the informa-
tion (Torrey and Taylor 2013; Taylor et al. 2014). Identify-
ing in advance inaccurate information given to the agent 
can significantly improve performance (Cruz et al. 2016a, 
2018a). While the information source may perform the vali-
dation and the verification of the given advice, the primary 
duty remains simply to act as a supplementary source of 
information. In this regard, both validation and verification 
of information are functions better suited for the external 
model or the assisted agent.

3.2 � Temporality

The temporal component, or temporality, refers to the time 
at which information is communicated by the information 
source. The information may be provided in full to the agent 
at a set time (either before, during, or after training). This 
is referred to as planned assistance (Partalas et al. 2008; 
Cheng et al. 2013). Alternatively, the information may be 
provided at any time during the agent’s operation, referred to 
as interactive assistance (Pilarski and Sutton 2012; Stahlhut 
et al. 2015).

Planned assistance, on the one hand, is common in ARL 
methods. Some examples are predefined additional shaping 
functions, agent policy initialisation based on either prior 
experience or a known distribution, and the creation of sub-
goals that lead the way to a final solution (Partalas et al. 
2008). These methods let the experiment designer endow 
the agent with initial information about the environment or 
the goal to be achieved. By providing this initial knowledge, 
the designer can reduce the agent’s need for exploration.

The bicycle experiment discussed in the previous sec-
tion is an example of planned assistance. As mentioned, 
the agent is learning to control a bicycle and must learn to 
steer it towards a goal (Randløv and Alstrøm 1998). Before 
the experiment, the designers give the agent additional 
information in the form of a reward signal that correlates 
to the direction of the goal state. This planned assistance 
approach helps the agent to narrow the search space by 
giving it extra information about the environment. This 
small yet beneficial initial information results in a signifi-
cant improvement in the agent’s learning speed.

Another example of planned assistance is found in heu-
ristic RL. Heuristic RL is a method of applying advice 
to agent decision-making. One example is an experiment 
which implements heuristic RL in the RoboCup soccer 
domain (Celiberto Jr et al. 2007), a domain known for 
its large state space and continuous state range. In this 
environment, one team attempts to score a goal, while 
the other team tries to block the first team from scoring, 
such as in half-field offence (Kalyanakrishnan et al. 2006; 
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Hausknecht et al. 2016). In this experiment using heuris-
tic RL, the defending team is given initial advice before 
training. This advice consists of two rules: if the agent 
is not near the ball then move closer, and if the agent is 
near the ball then do something with it. The experiment 
results show that a team that uses planned assistance per-
forms better than a team that is given no initial knowl-
edge (Celiberto Jr et al. 2007).

Interactive assistance, on the other hand, refers to infor-
mation provided by the source repeatedly throughout the 
agent’s learning. Information sources that assist interactively 
often can observe the agent’s current state, or the environ-
ment the agent is operating in. In current literature, humans 
are more commonly used as information sources for inter-
active assistance (Thomaz et al. 2006b; Subramanian et al. 
2011). The human can observe how the agent is performing 
and its current state in the environment, and provides guid-
ance or critiques of the agent’s behaviour (Bignold et al. 
2020).

For example, Sophie’s Kitchen (Thomaz and Breazeal 
2007) presents an IntRL based agent, called Sophie, which 
attempts to bake a cake by interacting with the items and 
ingredients found in a kitchen. In this experiment, the agent 
will receive a reward if it successfully bakes the cake. At any 
point during the agent’s training, an observing human can 
provide the agent with an additional reward to supplement 
the reward signal given by the environment. If the agent per-
forms an undesirable action, such as forgetting to add eggs 
to the cake, the human can punish the agent by providing an 
immediate negative reward. The human can also reward the 
agent for performing desirable actions, such as adding ingre-
dients in the correct order. In this experiment, the human 
advisor is acting as an interactive information source.

Although the agent could learn the task without any 
assistance, the addition of the human advisor and interac-
tive feedback allows the agent to learn the desired behav-
iour faster in comparison to autonomous RL (Thomaz and 
Breazeal 2007). The benefit of using interactive advice 
rather than planned advice is that the information source 
can react to the current state of the agent. Additionally, 
an interactive information source does not need to encode 
all possibly useful advice up front. Instead, it can choose 
to provide relevant information only when required. This 
approach does have a significant cost; the information source 
needs to be constantly observing the agent and determin-
ing what information is relevant. For instance, an approach 
using inverse RL through demonstrations may also consider 
providing failed examples to show the agent what not to 
do (Shiarlis et al. 2016).

3.3 � Advice interpretation

The advice interpretation stage of the taxonomy denotes 
what transformations need to occur on the incoming infor-
mation. The source provides information for the agent to use 
that may need to be translated into a format that the agent 
can understand. The information source may provide their 
assistance in many different forms. Some examples include 
audio (Cruz et al. 2015), video (Cruz et al. 2016b), text (Liu 
et al. 2021), distributions and probabilities (Millán et al. 
2019), or prior learned behaviour from a different task or 
agent (Da Silva et al. 2020b). This information needs to be 
adapted for use by the agent for the current task. The product 
of the advice interpretation stage depends on the structure 
that the agent or external model requires.

A field where the interpretation of incoming advice is 
crucial is Transfer Learning (TL). The goal of TL is to use 
behaviour learned in a prior task to improve performance in 
a new, previously unseen task (Da Silva and Costa 2019). A 
critical step in TL is the mapping of states and observations 
between the old and new domains. The information source 
provides information to the agent that does not fully align 
with its current task. Therefore, it is crucial that the informa-
tion provided can be correctly interpreted, so as to be useful 
to the current domain. More commonly, this interpretation 
stage in TL is performed by hand. However, there has also 
been effort attempting to automate this stage (Taylor et al. 
2008; Narvekar et al. 2016).

Another example of the use of the advice interpreta-
tion stage is with the sourcing of feedback for RL agents. 
In the Sophie’s Kitchen experiment (Thomaz and Breazeal 
2007), discussed in the previous section, the agent can be 
given positive or negative feedback by a human regarding 
its choice of actions. In this experiment, the human creates 
either a green (positive) or a red (negative) bar to repre-
sent the desired feedback to be given to the agent. This bar 
is used to interpret the reward signal to give to the agent, 
with the colour of the bar designating whether the reward is 
positive or negative, and the size of the bar designating the 
magnitude of the reward. This type of feedback can also be 
extended to audio, where recording phrases such as ‘Good’ 
or ‘Well Done’ are interpreted as positive rewards and ‘Bad’ 
or ‘Try Again’ are interpreted as negative rewards (Tenorio-
Gonzalez et al. 2010).

These methods can also be combined into a multi-model 
architecture to provide advice to an RL robotic agent using 
audiovisual sensory inputs, such as work by Cruz et al. (Cruz 
et al. 2016b). In this experiment, a simulated robot learns 
how to clean a table using a multi-modal associative func-
tion to integrate auditory and visual cues into a single piece 
of advice which is used by the RL algorithm. In this sce-
nario, the external information source is a human trainer 
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and the RL algorithm represents the integrated advice as a 
state-action pair.

3.4 � Advice structure

The advice structure component refers to the form that the 
agent or external model requires incoming information to 
take. The information that the agent uses can be represented 
in a number of ways. Some examples of advice structures 
include: Boolean values denoting positive or negative feed-
back; rules determining action selection; matrices for map-
ping prior experiences to new states; case-based reasoning 
structures for the agent to consult with; or, hierarchical deci-
sion trees to represent options for the agent to take (Subra-
manian et al. 2011; Kaplan et al. 2002).

The simplest form of structure is binary, in which the 
information takes only one from two options, such as ‘Good’ 
or ‘Bad’. An example of the use of a binary structure is the 
TAMER-RL agent (Knox and Stone 2009). TAMER-RL is 
an IntRL agent that uses binary feedback from an observing 
human. At any time step, the human can agree or disagree 
with the agent about its last action. In this case, the feedback 
is a binary structure indicating agree or disagree.

A more complex advice structure is used in case-based 
RL agents (Sharma et al. 2007). A case in this context rep-
resents a generalised area of the state space and provides 
information about which actions to take in that state. The 
use of a case-based structure allows the agent to gain more 
information from the information source compared to a 
binary structure, at a cost of more complex sourcing and 
interpretation approaches.

One of the more common advice structures is a simple 
state-action pair. A state-action pair consists of a single state 
and an associated piece of advice. The associated advice may 
be an additional scalar reward or a recommended action. 
Using a state-action pair, sourced information is interpreted 
to provide advice for a given state. In the cleaning-table 
robot task (Cruz et al. 2016b), discussed in the previous sec-
tion, the external trainer using multi-modal advice provides 
an action to be performed in specific states. Once the advice 
is processed using the multi-modal integration function, the 
proposed action is given to the RL agent to be executed as a 
state-action pair considering the agent’s current state. This 
state-action structure has also been used for other methods 
including TAMER-RL (Knox and Stone 2009), Sophie’s 
Kitchen (Thomaz and Breazeal 2007), and policy-shaping 
approaches (Griffith et al. 2013).

A novel rule-based interactive advice structure is intro-
duced in (Bignold et al. 2021b). Interactive RL methods 
rely on constant human supervision and evaluation, requir-
ing a substantial commitment from the advice-giver. This 
constraint restricts the user to providing advice relevant to 
the current state and no other, even when such advice may 

be applicable to multiple states. Allowing users to provide 
information in the form of rules, rather than per-state action 
recommendations, increases the information per interaction, 
and does not limit the information to the current state. Rules 
can be interactively created during the agent’s operation and 
be generalised over the state space while remaining flex-
ible enough to handle potentially inaccurate or irrelevant 
information. The learner agent uses the rules as persistent 
advice allowing the retention and reuse of the information 
in the future. Rule-based advice significantly reduces human 
guidance requirements while improving agent performance.

3.5 � External model

The external model is responsible for retaining and relaying 
information between the information source and the agent. 
The external model receives interpreted information from 
the information source and may either retain the information 
for use by the agent when required or pass it to the agent 
immediately.

A retained model is an external model that stores all 
information provided by the information source (Fernández 
and Veloso 2006). A retained model may be used if the cost 
of acquiring information is greater than the cost of stor-
ing it, if the information provided is general or applies to 
multiple states, or if the information is gathered incremen-
tally. In instances where information is gathered incremen-
tally, using a retained model allows the agent to build up a 
knowledge base over time. The agent may consult with the 
model at any time to determine if a reward signal is to be 
altered, or if there is any extra information that may assist 
with decision-making.

An immediate model passes the information directly to 
the agent (Moreira et al. 2020). In this case, the information 
received is only relevant to the current time step, or the cost 
of reacquiring the information from the source is less than 
that of retaining the information.

Approaches can also combine this by incorporating both a 
retained model as well as passing some information through 
directly, such as (Cruz et al. 2016a). In this work, an RL 
agent uses a combination of interactive feedback and contex-
tual affordances (Cruz et al. 2016c) to speed up the learning 
process of a robot performing a domestic task. On the one 
hand, contextual affordances are learned at the beginning 
of autonomous RL and are readily available from there on 
to avoid the so-called failed-states, which are states from 
where the robot is not able to finish the task successfully 
anymore. On the other hand, interactive feedback is provided 
by an external advisor and used to suggest actions to perform 
when the robot is learning the task. This advice is given to 
the robot to be used in the current state and it is discarded 
immediately after.
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The external model may have different functions depend-
ing on its implementation. For instance, heuristic RL hosts 
a model that stores rules and advice that generalise over 
sections of the state space (Dorigo and Gambardella 2014). 
In TL, the external model may hold information regarding 
past experiences and policies from problems similar to the 
current domain (Taylor and Stone 2009; Banerjee 2007), 
or in inverse RL, the external model is a substitute for the 
reward function (Abbeel and Ng 2004).

3.6 � Agent modification

The modification stage of the framework denotes how the 
information that the external model contains is used to assist 
the agent in achieving its goal. It is responsible for sup-
plementing the agent’s reward, altering the agent’s policy, 
or helping with the decision-making process. A popular 
method for injecting external information into agent learn-
ing is shaping (Skinner 1975). Shaping is a common method 
for altering agent performance by modifying parameters 
in the learning process. Erez and Smart (Erez and Smart 
2008) propose a list of techniques in which shaping can be 
applied to RL agents. These include altering the reward, the 
agent’s policy, agent learning parameters, and environmental 
dynamics (Xu et al. 2020).

Altering the reward the agent receives is a straightforward 
method for influencing an agent’s learning (Churamani et al. 
2016). It is known as reward-shaping, in which the external 
information is used to bias the agent’s learning (Ng et al. 
1999). Special care must be taken to ensure that any modi-
fication of the reward signal remains zero-sum to avoid the 
agent exploiting the shaped reward in ways that do not align 
with the desired goal. This can be achieved by ensuring that 
additional rewards are potential-based, meaning that they 
are derived from the difference in the values of a potential 
function at the current and successor states (Harutyunyan 
et al. 2015). However, recent work by (Behboudian et al. 
2020) shows a flaw in the previous method when trans-
forming non-potential-based reward-shaping into potential-
based. Alternatively, the authors introduce a policy invari-
ant explicit shaping algorithm allowing for arbitrary advice, 
confirming that it ensures convergence to the optimal policy 
when the advice is misleading and also accelerates learn-
ing when the advice is useful (Behboudian et al. 2020). 
Shaping techniques have also been used to alter state-action 
pairs (Wiewiora et al. 2003), for dynamic situations (Haru-
tyunyan et al. 2015; Devlin and Kudenko 2012), and for 
multi-agent systems (Devlin and Kudenko 2011).

Policy-shaping is the modification of the agent’s behav-
iour (Griffith et al. 2013). This modification can be done 
either by influencing how the agent makes decisions or by 

directly altering the agent’s learned behaviour. A simple 
method of policy-shaping involves forcing it to take certain 
actions if advice from the information source has recom-
mended them (Grizou et al. 2013; Navidi 2020). Human-in-
the-loop techniques may be beneficial to address complex 
RL problems with the help of domain experts, e.g., in health 
informatics (Holzinger 2016). This allows the external infor-
mation source to guide the agent and take direct control over 
exploration/exploitation. Alternatively, the information 
source can choose to alter the agent’s behaviour directly 
by changing Q-values or installing rules that override the 
actions for chosen states (Knowles and Wermter 2008). This 
method of modification can improve agent performance rap-
idly, as it can give the agent partial solutions.

Internal modification is a method of altering the param-
eters of the agent that are essential to its learning. Param-
eters such as the learning rate ( � ), discount factor ( � ), and 
exploration percentage ( � ), are all internal to the RL agent 
and may be altered to affect its performance (Tesauro 2004). 
For example, if an advisor observes that an agent is repeat-
ing actions and not exploring enough then the exploration 
percentage or learning rate may be temporarily increased. 
Internal modification is a simple method to implement. 
However, it can be difficult at times to know which param-
eters to adjust, and to what degree they are to be adjusted.

Environmental modification is an indirect method for 
influencing an RL agent. Altering the environment is not 
always achievable and may be a technique better suited 
for digital or simulated environments. Some examples 
of modifying the environment include altering or reduc-
ing the state space and observable information  (Ker-
zel et al. 2018; Breyer et al. 2019), reducing the action 
space (Sridharan et al. 2017), modifying the agent’s start-
ing state (Dixon et al. 2000), or altering the dynamics of 
the environment to make the task easier to solve (Millán-
Arias et al. 2021) Below, we further describe these envi-
ronmental modifications.

Reducing the state space can speed up the agent’s 
learning as there is less of the environment to search. 
While the agent cannot fully solve the task with an 
incomplete environment representation, it allows the 
agent to learn the basic behaviour. The level of detail in 
the state representation can then be increased, allowing 
the agent to refine its policy towards the correct behav-
iour (Kerzel et al. 2018; Breyer et al. 2019). Reducing the 
action space is similar to the previous. The agent’s avail-
able actions are limited, and the agent attempts to learn 
the best behaviour it can with the actions it has available. 
Once a suitable behaviour has been achieved, new actions 
can be provided, and the agent can begin to learn more 
complex solutions (Sridharan et al. 2017). Modifying the 
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agent’s starting space alters where in the environment 
the agent begins learning. Using this approach, the agent 
can begin training close to the goal. As the agent learns 
how to navigate to the goal, the starting state is incre-
mentally moved further away. This allows the agent to 
build upon its past knowledge of the environment (Dixon 
et al. 2000). Altering the dynamics of the environment 
involves changing how the environment operates to make 
the task easier for the agent to learn (Xu et al. 2020). By 
altering attributes of the environment such as reducing 
gravity, lowering maximum driving speed, or reducing 
noise, the agent may learn the desired behaviour faster or 
more safely. After the agent learns a satisfactory behav-
iour, the environment dynamics can be changed to more 
typical levels (Millán-Arias et al. 2020).

3.7 � Assisted agent

The final component of the proposed ARL taxonomy is 
the RL agent. A key aspect of the taxonomy is that the 
agent, in the absence of any external information, should 
operate the same as any RL agent would. Given no exter-
nal information, the agent should continue to explore and 
interact autonomously with its environment and attempt 
to achieve its goal.

In the next section, we present an in-depth look at some 
ARL techniques and describe them in terms of the taxonomy 
that has been presented in this section.

4 � Illustrative approaches with components 
and links from the taxonomy

This section presents an in-depth analysis of some popular 
and well-known ARL approaches. Each illustrative approach 
is described as an instance of the proposed taxonomy shown 
in Section 3, in some cases using a specific approach and 
in other cases a set of them. Therefore, for each presented 
ARL approach, we show how each processing component 
and each communication link particularly adapts to the ARL 
taxonomy using current literature in the respective field for 
concrete examples.

4.1 � Heuristic reinforcement learning

Heuristic RL uses pieces of information that generalise 
over an area of the state space. The information is used to 
assist the agent in decision-making and reduce the search-
able state space (Bianchi et al. 2015; Yang et al. 2019). An 
example of a heuristic is a rule. A rule can cover multiple 
states, making its use efficient at delivering advice to an 

agent. In Section 3.2, we have introduced a heuristic RL 
experiment applied to the RoboCup soccer domain (Celib-
erto Jr et al. 2007). In the RoboCup soccer domain, one 
team actively tries to score a goal, while the other team 
tries to block it. As mentioned, the defending team is given 
initial advice before training, consisting of two predefined 
rules. The following is an analysis of this heuristic RL 
example applied as the ARL taxonomy.

–	 Information source: The information source for the 
RoboCup experiment is a person. In this case, the per-
son has previously experimented with the robot soccer 
domain and can advise the agent with some rules that 
will speed up learning.

–	 Temporality: The advice for the agent is given before 
training begins. Once training has begun the person 
does not interact with the agent again. This is an exam-
ple of planned assistance, where information is given to 
the agent at a fixed time, and the information is known 
by the information source in advance.

–	 Advice interpretation: The information needs to 
be understandable by the agent. In the robot soccer 
domain, the person gives two rules; (i) if not near the 
ball then move towards the ball, and (ii) if near the 
ball do something with the ball. These rules are under-
standable by the human but need to be translated into 
machine code so that agent can use them. This is usu-
ally a task easily performed by a knowledgeable human 
operator. The result is conditional-like rules as: (i) IF 
NOT close_to_ball() THEN target_and_move(), and 
(ii) IF close_to_ball() THEN kick_ball().

–	 Advice structure: The structure of the advice after 
being interpreted is a new rule. The rule needs to be 
compatible with the agent, including the ability to sub-
stitute variables and evaluate expressions.

–	 External model: The external model used by the heu-
ristic RL agent is a rule set. The external model retains 
all rules given to it. The model may also retain statistics 
about the rule relating to confidence, number of uses, 
and state space covered.

–	 Agent modification: Heuristic RL uses the rule set to 
assist the agent in its decision-making. If a rule applies 
to the current state, then the action that the rule rec-
ommends is taken by the agent. This is a form of pol-
icy-shaping as the agent’s decision-making is directly 
manipulated by the external information.

–	 Assisted Agent: The RL agent operates as usual. When 
it is time to decide on an action to take it consults the 
external model. The external model tests all the rules it 
has and checks to see if any applies to the current state, 
otherwise, the agent’s default decision-making mecha-
nism is used.
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Figure 5 shows how the heuristic RL approach fits into the 
proposed ARL taxonomy taking into consideration the previ-
ous definitions of processing components and communica-
tion links from the RoboCup soccer domain.

4.2 � Interactive reinforcement learning

IntRL is another application of ARL. Most commonly, the 
information source is an observing human or a substitute 
for a human, such as an oracle, a simulated user, or another 
agent (Thomaz et al. 2005). The human provides assessment 
and advice to the agent, reinforcing the agent’s past actions 
and guiding future decisions. The human can assess past 
actions in two ways, by stating that the agent’s chosen action 
is somehow correct or incorrect, or by telling the agent what 
the correct action to take is in that instance. Alternatively, 
the human can advise the agent on what actions to take in the 
future (Li et al. 2019). The human can recommend actions 

to take or to avoid, or provide more information about the 
current state to assist the agent in its decision-making (Cruz 
et al. 2018b).

IntRL applications include having a human to provide 
additional reward information (Knox and Stone 2012a, b), 
and having a human or agent provide action advice (Zhan 
et al. 2016; Amir et al. 2016). All of these methods work in 
real-time and similarly, differing mainly in the agent modi-
fication stage. The following is an analysis of these IntRL 
approaches applied as the ARL taxonomy.

–	 Information source: The information source is a human 
or simulated user. A simulated user is a program, analo-
gous to a human, that acts how a human would in a given 
situation. The human can observe the agent’s current and 
past states, past actions taken, and what action the agent 
recommends it takes (Bignold et al. 2021a).

–	 Temporality: IntRL agents operate interactively. The 
advisor can provide information to the agent before, 
during, or after learning, and repeatedly throughout 
the learning process. This allows the advisor to react to 
current information and supply the agent with relevant 
advice.

–	 Advice interpretation: The advisor provides either 
an assessment of past actions taken, recommendations 
about actions to take, or a reward signal. Computer simu-
lated agents can receive this information as key presses. 
However, physical agents may receive this information 
through audio or video inputs (Cruz et al. 2016b). In the 
case of audio inputs, these may be simple commands 
such as ’Correct’ or ’Go Right’, which can be translated 
to a form the agent can understand (Cruz et al. 2015). 
Supporting input modalities such as natural language 
makes systems based on IntRL more accessible to users 
who are not themselves familiar with RL.

–	 Advice structure: A common structure of advice the 
agent requires is simply a state-action pair. Using this 
structure the human can assign advice to a state for the 
agent to use, such as: In this state, do this (Ayala et al. 
2019).

–	 External model: Either retained or immediate models 
are commonly used (Fernández and Veloso 2006; Knox 
et al. 2012). A retained model tracks what advice/feed-
back has been received for each state (Fernández and 
Veloso 2006). The agent can use this model to determine 
the human’s accuracy, consistency, and discount for each 
piece of advice received. The model acts as a lookup 
table for the agent, if advice exists for the current state, 
then the agent can use it. Alternative methods may not 
retain information given by the human and only use it for 
the current state (Knox et al. 2012).

–	 Agent modification: The most common methods of 
using the advice to modify the agents learning process 

Fig. 5   Heuristic RL components according the proposed ARL taxon-
omy. The particular processing components and communication links 
illustrate a technique used in the RoboCup soccer domain  (Celib-
erto Jr et al. 2007)
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are reward- and policy-shaping (Li et al. 2019). Reward-
shaping uses assessment/critique gathered from the advi-
sor to alter the reward given to the agent. If the advisor 
disagrees with a past action, then the reward received for 
that state-action pair is decreased. If the advisor recom-
mends an action to take in the future, then policy-shaping 
can be used to override the agent’s usual action selec-
tion mechanism. One method of implementing policy-
shaping for interactive advice is probabilistic policy 
reuse (Fernández and Veloso 2006).

–	 Assisted Agent: Most of the time, the RL agent operates 
as any other RL agent would, i.e., it performs actions 
in the environment by exploiting/ exploring. The agent 
should continue to do so even if no advice from the 
trainer is given. Although a trainer could proactively pro-
vide advice to the learner, sometimes the student could 
decide to request such advice, and the trainer may or 
may not respond to that request. For instance, heuristics 
have been used to decide if the trainer should provide 
advice and/or if the learner should ask for it (Amir et al. 
2016). In contrast, recent work estimates the learner’s 
uncertainty in its current state, asking for advice in case 
the level of uncertainty is above a predefined thresh-
old (Da Silva et al. 2020a).

Figure 6 shows how the IntRL approach is adapted to the 
proposed ARL taxonomy taking into account the previous 
definitions of processing components and communication 
links.

4.3 � Reinforcement learning from demonstration

RLfD is a term coined by Schaal (Schaal 1997). It refers 
to the setting where both a reward signal and demonstra-
tions are available to learn from, combining the best of the 
fields of RL and Learning from Demonstration (LfD). Since 
RL presents an objective evaluation of behaviour, optimal 
behaviour can be achieved. Such an objective evaluation of 
behaviour is not present in LfD (Argall et al. 2009b), where 
only expert demonstrations are available to be mimicked 
and generalised. The student can thus not surpass its mas-
ter. Nevertheless, LfD is typically much more sample effi-
cient than RL. Therefore, the aim is to combine the fast LfD 
method with objective behaviour evaluation and theoretical 
guarantees from RL.

Two different approaches have been proposed to use dem-
onstrations in an RL setting. The first is the generation of 
an initial value-function for temporal-difference learning by 
using the demonstrations as passive learning experiences 
for the RL agent (Smart and Kaelbling 2002). The second 
approach derives an initial policy from the demonstrations 
and uses that to kickstart the RL agent (Brys et al. 2015; 

Suay et al. 2016). In this regard, Taylor et al. propose the 
Human-Agent Transfer (HAT) algorithm  (Taylor et  al. 
2011), which consists of three steps: (i) demonstration: the 
agent performs the task teleoperated and records all state-
action transitions, (ii) policy summarising: in order to boot-
strap autonomous learning, policy rules are derived from 
the recorded state-action transitions, and (iii) independent 
learning: autonomous reinforcement learning using the pol-
icy summary to bias the learning. Below we use the HAT 
algorithm to describe how RLfD fits into the ARL taxonomy.

–	 Information source: An expert of the task (human or 
otherwise) can provide sample behaviour by demonstrat-
ing its execution of the task. Preferably these demonstra-
tions are efficient and successful executions of the task.

–	 Temporality: It uses planned assistance. Demonstrations 
are recorded and given to the learning agent before it 
starts training.

Fig. 6   Interactive RL as the proposed ARL taxonomy. In this 
approach, interactive advice is given by the user and more commonly 
used as policy and reward shaping
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–	 Advice interpretation: The received demonstrations 
must be first transformed into the agent’s perspective by 
encoding them as sequences of state-action pairs. These 
are then processed using a classifier, which serves as the 
LfD component, creating an approximation of the dem-
onstrator’s policy using rules.

–	 Advice structure: The information is encoded as a clas-
sifier that maps states to the actions which the demonstra-
tor is hypothesised to execute in those states.

–	 External model: The generated rules are stored in the 
external model and not modified anymore. The external 
model can be queried with a state and responds with the 
hypothesised demonstrator action in that state.

–	 Agent modification: The action proposed by the dem-
onstrator can be integrated into the agent through three 
action biasing methods: (i) attributing a value bonus to 
the Q-value for that state-action pair, (ii) extending the 
agent’s action set with an action that executes the hypoth-
esised demonstrator action, and (iii) probabilistically 
choosing to execute the action suggested by the model.

–	 Assisted agent: During its decision-making (when and 
how depends on the implemented modification method) 
the agent has the option to consult the external model 
to obtain the action that the demonstrator is assumed 
to take. This kind of agent is sometimes referred to as 
curiosity-driven agent (Pathak et al. 2017). Otherwise, 
the agent acts as a usual RL agent.

Figure 7 shows how the RLfD approach is adapted to the 
proposed ARL taxonomy taking into account the previous 
definitions of processing components and communication 
links for the HAT algorithm.

4.4 � Transfer learning

The idea of transferring information between tasks (or 
between agents), rather than learning every task from the 
ground up seems to be obvious in retrospect. While transfer 
between different tasks has long been studied in humans, 
it has only gained popularity in RL settings in the last dec-
ade (Taylor and Stone 2009). We consider three distinct set-
tings where TL can be useful.

First, an agent may have learned how to perform a task 
and a new agent must learn to perform that same task or a 
variation on the task under different circumstances. Let us 
consider two agents with different state features, i.e., dif-
ferent sensors, or different action spaces (or different actu-
ators). In this case, an inter-task mapping (Bou Ammar 
et al. 2011; Taylor et al. 2007a) can be hand specified or 
learned from data (Taylor et al. 2007b; Ammar et al. 2015) 
to relate the new target agent to the existing source agent. 
One of the simplest ways to reuse such knowledge is to 
embed it into the target task agent, e.g., directly reuse the 

Q-values that the source agent had learned (Taylor et al. 
2007a).

Second, let us now consider that the world may be non-
stationary. In TL settings, it is common to assume that the 
agent is notified when the world (or task in that world) 
changes. However, a TL agent sometimes does not need to 
detect changes (Hernandez-Leal et al. 2017) or worry about 
the slow world changes over time (Akila and Zayaraz 2015). 
As in the previous setting, the agent may want to modify the 
information, e.g., by using an inter-task mapping, to relate 
the two tasks. In addition, the agent may decide not to use 
its prior knowledge at all, e.g., to avoid negative transfer 
because the tasks are too dissimilar (Taylor et al. 2007a).

Third, TL could be a critical step within a curriculum 
learning approach (Taylor 2009; Bengio et al. 2009). For 
example, previous work has shown that learning a sequence 
of tasks that gradually increase in difficulty can be faster 
than directly training on the final (difficult) task (Taylor et al. 

Fig. 7   RL from demonstration as the proposed ARL taxonomy. In 
this case, the processing components and communication links are 
defined from the HAT algorithm (Taylor et al. 2011), which combines 
RL and LfD



	 A. Bignold et al.

1 3

2007b; Eppe et al. 2019). In addition to curricula that are cre-
ated by machine learning experts, curricula constructed by 
naive human participants have also been considered (Peng 
et al. 2017). Others have considered as a complementary 
problem a learning agent autonomously creating a curricu-
lum (Narvekar et al. 2017; Da Silva and Costa 2018). In all 
cases, the difficulty is scaffolding correctly so that the agent 
can learn quickly on a sequence of tasks. These approaches 
are distinct from multi-task learning (Fernández and Veloso 
2006), where the agent wants to learn over a distribution 
of tasks, and lifelong learning (Chen and Liu 2016; Parisi 
et al. 2019), where learning a new task should also improve 
performance on previous tasks. The following is an analysis 
of TL methods in terms of the ARL taxonomy.

–	 Information source: The information comes from an 
agent with different capabilities or the same agent that 
has trained on a different task.

–	 Temporality: Transfer typically occurs when a task 
changes or when an agent first faces a novel task. In both 
cases, it is planned assistance, i.e., the source agent trans-
fers knowledge to the target agent before the target agent 
begins learning. If the inter-task mapping is initially 
unknown, some time may be spent trying to learn an 
inter-task mapping or estimate task similarity to previous 
tasks. However, the more time spent before the transfer, 
the less impact transfer can have.

–	 Advice interpretation: There are many types of informa-
tion that can be transferred, including Q-values, rules, a 
model, etc. (Taylor et al. 2007a). TL methods assume 
the target agent has access to the source agent’s ‘brain’, 
an assumption that may not always be true, e.g., if the 
designer of the source agent has not provided an API or 
if the source agent is a human.

–	 Advice structure: The structure of the transferred knowl-
edge is as varied as the types of information that can be 
provided. This variety of information includes Q-values, 
rules, or a model, among others.

–	 External model: The source model is normally retained. 
Because the source task knowledge is not necessarily suf-
ficient for optimal performance in the target task, it is 
important for the target agent to be able to learn to out-
perform the transferred information.

–	 Agent modification: The target task agent uses the trans-
ferred information to bias its learning. The transferred 
knowledge is not typically modified. Instead, the tar-
get task agent builds on top of the knowledge, learning 
when to ignore it and instead follow the knowledge it has 
learned from the environment.

–	 Assisted Agent: The agent is a typical RL agent that can 
take advantage of one or more types of prior knowledge.

Figure 8 shows how the TL approach can be represented 
within the proposed ARL taxonomy taking into account the 
previous definitions of processing components and commu-
nication links.

4.5 � Multiple information sources

While the majority of work in ARL is based on a single 
source of advice, several researchers have considered scenar-
ios where multiple sources of advice may exist (Brys et al. 
2017; Da Silva 2019; Gimelfarb et al. 2018; Yamagata et al. 
2019). Although the use of multiple information sources is 
not an ARL approach by itself and could comprise sources 
utilising any of the previously mentioned approaches, we 
include it here to highlight how this multiple sources can 
be framed within the proposed taxonomy. The introduc-
tion of multiple advisors may have benefits for ARL agents, 
particularly in scenarios where each individual advisor has 
knowledge which is limited in some way (Shelton 2001), 

Fig. 8   Transfer learning as the proposed ARL taxonomy. In this case, 
an agent with different capabilities (or the same agent) provides the 
model of a source task which is transferred to a target task
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e.g., individual advisors may have expertise covering dif-
ferent sub-areas of the problem domain. However, it also 
introduces additional problems for the agent, such as han-
dling inconsistencies or direct conflicts between the guid-
ance provided by different advisors, or learning to judge 
the reliability of each advisor, possibly in a state-sensitive 
manner (Zhan et al. 2016). In the extreme case, an agent 
may even need to be able to identify and ignore the advice 
provided by deliberately malicious advisors (Nunes and 
Oliveira 2003). The following is an analysis of approaches 
using multiple information sources with respect to the pro-
posed ARL taxonomy.

–	 Information source: Prior research has identified several 
scenarios in which an agent may have access to multiple 
sources of external information. Argall et al. (Argall et al. 
2009a) argue that when robots are applied to tasks within 
society in general, it is very likely that multiple users will 
interact with and guide the behaviour of a robot. In the 
context of TL, multiple sources of information may be 
derived either from experience on varying MDPs (Par-
isotto et al. 2016), or on alternative mappings from a 
single prior MDP to the current environment (Talvitie 
and Singh 2007). In multi-agent systems, each agent may 
serve as a potential source of information for every other 
agent (Da Silva et al. 2017; Fachantidis et al. 2019).

–	 Temporality: Assistance may be planned or interac-
tive. For instance, Argall et al. (Argall et al. 2009a) have 
considered two different sources of information, in the 
form of teacher demonstrations and teacher feedback on 
trajectories generated by the learner. The former may be 
provided in advance of learning consisting of complete 
state-action trajectories, i.e., planned assistance, while 
the latter occurs on an interactive basis during learn-
ing, and structurally consists of a subset of the learner’s 
actions being flagged as correct by the teacher, i.e., inter-
active assistance.

–	 Advice interpretation: The majority of work so far on 
ARL from multiple information sources has assumed that 
these sources are homogeneous in terms of the timing 
and nature of the information provided. However, this 
need not be the case, and for heterogeneous informa-
tion sources, some aspects of the advice may differ in 
terms of interpretation and structure. In this regard, the 
advice needs to be integrated considering either all pos-
sible sources (equally or non-equally contributing), some 
sources (with the information provided partially or fully 
considered), or only from one source at a time (Shelton 
2001).

–	 Advice structure: Each information source may use a 
different structure of advice. Therefore, individually all 
the aforementioned structures in previous sections are 
possible to be used, e.g., machine rule, state-action pair, 

rule system, value, or model. The final structure into a 
single piece of advice may be done by integrating the 
multiple information sources, for instance using a multi-
modal integration function (Cruz et al. 2016b) or using 
graph structures (e.g., graph neural networks) using 
causal links between features for multi-modal causabil-
ity (Holzinger et al. 2021).

–	 External model: An ARL agent must choose whether (i) 
to maintain a separate model for each information source, 
(ii) to combine the information from all sources into a 
single model, or (iii) a combination of both. An example 
of the latter approach is the inverse RL system presented 
in (Karlsson 2014), which learns a model of each infor-
mation source in the form of a feature-weighting function 
and then forms a combined feature-weighting via averag-
ing. As noted by Karlsson (Karlsson 2014), single-model 
approaches may encounter difficulties if dealing with 
information sources which are fundamentally incompat-
ible with each other. An additional benefit of maintaining 
independent models is that these can also be augmented 
by additional data on characteristics of each informa-
tion source, such as the reliability or consistency of its 
advice (Argall et al. 2009a; Talvitie and Singh 2007).

–	 Agent modification: Any of the modification approaches 
discussed in the earlier sections of this paper may 
also be applied in the context of multiple information 
sources. For example, agent modification methods from 
LfD (Argall et al. 2009a), TL (Talvitie and Singh 2007; 
Parisotto et al. 2016), reward-shaping (Brys et al. 2014; 
Knox et al. 2013) as well as inverse RL (Karlsson 2014; 
Tanwani and Billard 2013). The main additional con-
sideration is how these methods may be affected by the 
presence of multiple external models. The main methods 
examined so far use a combination of the models, either 
weighted or unweighted (Argall et al. 2009a; Karlsson 
2014) or select a single best model to use (Talvitie and 
Singh 2007).

–	 Assisted Agent: In most circumstances, the operation of 
the agent itself is largely unaffected by the presence of 
more than one information source. However, Tanwani 
and Billard (Tanwani and Billard 2013) consider the task 
of performing inverse RL from multiple demonstrations 
provided by multiple experts, operating according to dif-
ferent strategies or preferences. To address the poten-
tial incompatibilities between these strategies, the agent 
attempts to learn a set of multiple policies, so as to be 
able to satisfy any policy expert strategy, including those 
not provided to the agent. This approach is closely related 
to multi-policy algorithms developed for multiobjective 
RL (Roijers et al. 2013).
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Figure 9 shows how an approach using multiple infor-
mation sources is adapted to the proposed ARL taxonomy 
taking into account the previous definitions of processing 
components and communication links. Moreover, Table 1 
summarises how each of the ARL approaches and exam-
ples reviewed in this section is adapted to the proposed 
taxonomy.

5 � Future directions and open challenges

In this section, we discuss open issues and propose further 
possibilities for future work in the field of ARL. These open 
questions have been identified from the current literature in 
the field. Many of these issues are shared with autonomous 
RL but it still remains open how they could be addressed 
within the ARL framework.

5.1 � Incorrect assistance

A common assumption that ARL methods make is that 
all external information that the agent receives is accu-
rate (Efthymiadis et al. 2013). Accurate information is cor-
rect advice that assists the agent in completing its goal. 
However, the assumption that information will always be 
of use to the agent is wrong, especially when the informa-
tion source is an observing human, as in RL from imper-
fect demonstrations (Gao et al. 2018; Jing et al. 2020). 
Humans may deliver advice late, and therefore the agent 
may relate it to a wrong state. The advice may be of short-
term use to the agent but prevent it from achieving optimal 
performance. Moreover, the human trainer may even be 
malicious and actively attempting to sabotage the agent’s 
performance.

Fig. 9   Multiple information sources as the proposed ARL taxonomy. 
In this case, there could be multiple humans or multiple agents. One 
important aspect is to integrate the different pieces of advice. The 
agent may also learn multiple policies as in multi-objective RL

Table 1   Summary of the reviewed assisted reinforcement learning approaches adapted to the proposed taxonomy

Approach Information 
source

Tempora-lity Advice interpre-
tation

Advice structure External model Agent modifi-
cation

Assisted agent

Heuristic 
reinforcement 
learning

Human-domain 
expert

Planned Convert rule 
to machine 
language

Machine rule Retained rule-
set

Policy shaping Normal agent

Interactive 
reinforcement 
learning

Human / simu-
lated user

Interactive Convert modal 
cue to signal

State-action pair Immediate Policy / reward 
shaping

Curiosity-driven 
agent

Reinforcement 
learning from 
demonstration

Domain expert Planned Convert 
demonstra-
tion to agent’s 
perspective

Rule system Retained rule 
system

Action biasing Curiosity-driven 
agent

Transfer learn-
ing

Agent with 
different capa-
bilities

Planned Q-values, rules, 
or models

Value, rule, or 
model

Retained source 
model

Action biasing Normal agent

Multiple 
information 
sources

Multi-users or 
multi-agent 
system

Planned or 
interactive

Multi-source 
integration

Integrated 
advice

Separated or 
combined 
model

Weighted or 
unweighted 
combination

Multi-policy 
agent
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Incorrect information can be introduced by other 
sources as well. Some examples for non-human incor-
rect advice include behaviour transferred from another 
domain that does not align correctly, rules that general-
ise over multiple states which may cover exception states, 
and noisy or missing information from audio-visual 
sources (Cruz et al. 2016b).

Information given to agents may be correct initially, 
but over time no longer be the optimal solution (Akila 
and Zayaraz 2015). Other advice may be mostly accurate 
or correct for most states, however, there can exist states 
of exception to the advice. These exception states can be 
the critical difference between an ordinary solution and 
the optimal solution. There is a need for research on how 
to identify and mitigate incorrect information in these 
scenarios, especially considering that even a very small 
amount of incorrect advice may be really detrimental for 
the learning process (Cruz et al. 2018a).

5.2 � Multiple information sources

As reviewed in the previous section, the use of multiple 
information sources may naturally arise on some applica-
tion scenarios, and can increase the agent’s knowledge of 
the environment, and increase confidence in decision-mak-
ing if the different sources agree on an action. However, 
the use of multiple sources raises additional questions:

–	 What if the different sources disagree on the best action 
to take?

–	 How can the agent identify the best information source 
to listen to?

–	 How can the agent manage conflicting information?
–	 How can the agent measure trust in the different infor-

mation sources?

Additionally, the use of multiple sources may be extended 
to crowdsourcing (Kamar et al. 2012). In this context, 
crowdsourcing refers to the enlistment and use of a large 
number of people, either paid or unpaid and can range in 
size from tens to tens of thousands. Typically, crowdsourc-
ing is performed via the internet. This can raise challenges 
of malicious users, anonymity, and large uncertainty in the 
value and reliability of the information.

5.3 � Explainability

Explainability refers to translating the agent’s information 
into a form the human can understand (Cruz et al. 2019; 
Dazeley et al. 2021b). The reasons why an agent develops 
certain behaviours can sometimes be difficult to understand 
for non-expert end-users. Systems to measure the quality 

of explanations generated by AI-based systems have been 
previously introduced in order to build effective and effi-
cient human-AI interaction (Holzinger et al. 2020). When 
combining the RL method with policy modification meth-
ods such as rules, expert assistance, external models, and 
policy-shaping, understanding why an agent chooses to take 
an action becomes even more difficult. Developing methods 
for understanding agent learning and its decision-making 
is important as it allows the human to remain informed of 
the agent’s motivations and decisions, and keep track of the 
accountability of the actions taken (Dazeley et al. 2021a). 
This can be beneficial for artificial intelligence ethics, and 
human-computer teaching, among other fields.

5.4 � Two‑way communication

Two-way communication refers to the ability for the infor-
mation source and the agent to converse with each other, 
perhaps multiple times before making a decision  (Kes-
sler Faulkner et al. 2019). Two-way communication can 
allow the information source, presumably human, and the 
agent to ask questions to each other, request more infor-
mation, and to clarify decision-making and its reasoning. 
Although the proposed framework includes two-way com-
munication, as shown in Figure 1, most current ARL meth-
ods do not have two-way communication to the extent that 
non-expert human advisors can interact with the agent freely. 
For two-way communication to apply to non-expert human 
advisors issues of explainability (as shown in the previous 
section), timing, and agent initiation need to be addressed.

Timing refers to the time it takes to communicate back 
and forth. Agents sometimes have a fixed time limit, dur-
ing which they need to learn, communicate, and decide on 
the next action. Methods for reducing the time it takes to 
interact with the human and reducing the number of interac-
tions needed with the human are two areas open for research. 
Agent initiation refers to the ability for the agent to initiate 
communication with the human source itself. The agent may 
choose to do this so to request clarification on information, 
or request assistance for decision-making. A challenge for 
agent initiation is to determine when and how often the agent 
should request assistance. The requests for assistance should 
be frequent enough to make use of the information source 
while not becoming a nuisance to the human, or detract-
ing from learning time, and should consider the cost of the 
request, e.g., in paid crowdsourcing.

5.5 � Other challenges

There are also other challenges to be considered for future 
possibilities of ARL systems. Although many of the issues 
described in this section are also shared with autonomous 
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RL (Mankowitz et al. 2019), we focus the discussion on how 
particularly externally-influenced agents may be affected in 
the context of the ARL framework. While we describe the 
essential implications on ARL systems for each of the fol-
lowing areas, we note that further and deeper discussion may 
be addressed for each of them.

–	 Real-time policy inference: Many RL systems need 
to be deployed in real-world scenarios and, therefore, 
policy inference must happen in real-time (Koenig and 
Simmons 1993). Using ARL frameworks may lead to 
additional issues since the external information source 
should observe and react to the RL agent’s state as fast as 
possible, otherwise the assistance may become unneces-
sary or incorrect for the new reached state.

–	 Assistance delay: There are RL systems where deter-
mining the state or receiving the reward signal may take 
even weeks, such as a recommender system where the 
reward is based on user interaction (Mann et al. 2018). 
In these contexts, the external information source may 
also lead to unknown delays in the system actuators, sen-
sors, or rewards, making the assistance atemporal, either 
delayed or ahead, or even in some cases being conflict-
ing or redundant considering the RL agent’s autonomous 
operation.

–	 Continuous states and actions: When an RL agent 
works in high-dimensional continuous state and action 
spaces (Millán et al. 2019; Ayala et al. 2019) there could 
be issues for learning even in traditional RL (Dulac-
Arnold et al. 2015). In an ARL framework, additional 
problems may be present as the agent uses external 
information which may be not accurate enough given the 
high dimensionality. In the presence of high-dimensional 
states and actions, even small differences in the received 
assistance may substantially slow the learning process 
since these differences may represent in essence a very 
different state or action.

–	 Safety constraints: In RL environments, there are safety 
constraints that should never or at least rarely be vio-
lated (Karimpanal et al. 2019). Special care is needed 
when receiving information from an external source 
since there could be situations that the advisor may 
repeatedly direct the agent to unsafe states and, in turn, 
lead to an increase in the time needed for learning.

–	 Partially observable environments: In practice, many 
RL problems are partially observable (Chen et al. 2018). 
For instance, partial observabilities may occur in non-
stationary environments (Millán et al. 2019) or in pres-
ence of stochastic transitions (Cruz et al. 2021). If the 
external information source does not have observations 
to clearly infer the current state in the environment may 
lead to giving incorrect assistance to the learner agent.

–	 Multi-objective reward: In many cases, RL agents need 
to balance multiple and conflicting subgoals, therefore, 
they may use multi-dimensional reward functions (Vam-
plew et al. 2020). In this regard, an external information 
source may give priority to a particular subgoal over the 
others, unbalancing the global reward function. There 
could be also issues when multiple information sources 
are used covering or favouring different subgoals. Moreo-
ver, when using a multi-objective reward in TL, there 
could only be some subgoals from the source task which 
are relevant in the target task, therefore, the RL agent 
should also coordinate and filter relevant information.

–	 Multi-agent systems: There could be multiple agents 
learning a task and multiple external information sources. 
In this case, if an information source provides advice it 
could be generalised to all of them or it could be pointed 
specifically to an agent. Moreover, advice useful for one 
agent may be detrimental to another, depending on the 
state, the agent’s current knowledge, or its particular 
reward function. Using multiple information sources, if 
an agent consults an external source, it may be necessary 
to discriminate which one is the best for the particular 
state. Additionally, the teacher-student approach usually 
integrated into ARL requires the teacher to be an expert 
in the learning domain. In this regard, multiple learning 
agents may also advise each other while learning in a 
common environment (Da Silva et al. 2017).

6 � Conclusions

In this article, we have reviewed ARL methods and pre-
sented an ARL framework, comprising all RL techniques 
that use external information. ARL methods use exter-
nal information to supplement the information the agent 
receives from the environment to improve performance and 
decision-making.

To describe the different ARL methods, we propose a 
taxonomy to classify the different functions of an externally-
influenced RL agent. Through the analysis of the current 
literature, we have found seven key features that make up 
an ARL technique. They are divided into four processing 
components and three communication links. A definition and 
examples of each of these seven features have been presented.

The contribution of this paper is twofold: the review of 
state-of-the-art ARL methods and the ARL taxonomy as an 
additional level of abstraction. However, future work framed 
into our proposed ARL taxonomy can also make use of the 
different concepts here defined, either processing compo-
nents or communication links. In this regard, it is essential to 
understand that not each ARL method must necessarily use 
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all the proposed concepts. In some cases, simplified models 
may also be a representation of the ARL framework.

Additionally, we demonstrated the applicability of the 
framework on different ARL fields. These areas include 
heuristic RL, IntRL, RLfD, TL, and multiple informa-
tion sources. Each of these fields has been analysed and 
described as applied to the presented taxonomy. Finally, we 
also present some ideas about areas for future research in 
order to extend the ARL field.
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