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Abstract

Reward shaping (RS) is a powerful method in reinforcement
learning (RL) for overcoming the problem of sparse or uninfor-
mative rewards. However, RS typically relies on manually en-
gineered shaping-reward functions whose construction is time-
consuming and error-prone. It also requires domain knowledge
which runs contrary to the goal of autonomous learning. We
introduce Reinforcement Learning Optimising Shaping Algo-
rithm (ROSA), an automated reward shaping framework in
which the shaping-reward function is constructed in a Markov
game between two agents. A reward-shaping agent (Shaper)
uses switching controls to determine which states to add shap-
ing rewards for more efficient learning while the other agent
(Controller) learns the optimal policy for the task using these
shaped rewards. We prove that ROSA, which adopts existing
RL algorithms, learns to construct a shaping-reward function
that is beneficial to the task thus ensuring efficient conver-
gence to high performance policies. We demonstrate ROSA’s
properties in three didactic experiments and show its superior
performance against state-of-the-art RS algorithms in chal-
lenging sparse reward environments.

1 Introduction
Despite the notable success of RL in a variety domains,
enabling RL algorithms to learn successfully in numerous
real-world tasks remains a challenge (Wang et al. 2021). A
key obstacle to the success of RL algorithms is that sparse
reward signals can hinder agent learning (Charlesworth and
Montana 2020). In many settings of interest such as physical
tasks and video games, rich informative signals of the agent’s
performance are not readily available (Hosu and Rebedea
2016). For example, in the video game Super Mario (Shao
et al. 2019), the agent must perform sequences of hundreds
of actions while receiving no rewards for it to successfully
complete its task. In this setting, the infrequent feedback of
the agent’s performance leads to RL algorithms requiring
large numbers of samples (and high expense) for solving
problems (Hosu and Rebedea 2016). Therefore, there is need
for RL techniques to solve such problems efficiently.
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Reward shaping (RS) is a tool to introduce additional re-
wards, known as shaping rewards, to supplement the environ-
mental reward. These rewards can encourage exploration and
insert structural knowledge in the absence of informative en-
vironment rewards thereby significantly improving learning
outcomes (Devlin, Kudenko, and Grześ 2011). RS algorithms
often assume hand-crafted and domain-specific shaping
functions, constructed by subject matter experts, which runs
contrary to the aim of autonomous learning. Moreover, poor
choices of shaping rewards can worsen the agent’s perfor-
mance (Devlin and Kudenko 2011). To resolve these issues,
a useful shaping reward must be obtained autonomously.

We develop a framework that autonomously constructs
shaping rewards during learning. ROSA introduces an addi-
tional RL agent, the Shaper, that adaptively learns to con-
struct shaping rewards by observing Controller , while Con-
troller learns to solve its task. This generates tailored shaping
rewards without the need for domain knowledge or manual
engineering. These shaping rewards successfully promote
effective learning, addressing this key challenge.

The resulting framework is a two-player, nonzero-sum
Markov game (MG) (Shoham and Leyton-Brown 2008) —
an extension of Markov decision process (MDP) that in-
volves two independent learners with distinct objectives. In
our framework the two agents have distinct learning agen-
das but cooperate to achieve the Controller’s objective. An
integral component of ROSA is a novel combination of RL
and switching controls (Mguni et al. 2022; Bayraktar and
Egami 2010; Mguni 2018). This enables Shaper to quickly
determine useful states to learn to add in shaping rewards
(i.e., states where adding shaping rewards improve the Con-
troller’s performance) but disregard other states. In contrast
Controller must learn actions for every state. This leads to
the Shaper quickly finding shaping rewards that guide the
Controller’s learning process toward optimal trajectories (and
away from suboptimal trajectories, as in Experiment 1).

This approach tackles multiple obstacles. First, a new agent
(Shaper) learns while the Controller is training, while avoid-
ing convergence issues. Second, unlike standard RL, the
Shaper’s learning process uses switching controls. We show
successful empirical results and also prove ROSA converges.
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2 Related Work
Reward Shaping Reward Shaping (RS) adds a shaping
function F to supplement the agent’s reward to boost learn-
ing. RS however has some critical limitations. First, RS does
not offer a means of finding F . Second, poor choices of F can
worsen the agent’s performance (Devlin and Kudenko 2011).
Last, adding shaping rewards can change the underlying prob-
lem therefore generating policies that are completely irrele-
vant to the task (Mannion et al. 2017). In (Ng, Harada, and
Russell 1999) it was established that potential-based reward
shaping (PBRS) which adds a shaping function of the form
F (st+1, st) = γφ(st+1)−φ(st) preserves the optimal policy
of the problem. Recent variants of PBRS include potential-
based advice which defines F over the state-action space
(Harutyunyan et al. 2015) and approaches that include time-
varying shaping functions (Devlin and Kudenko 2012). Al-
though the last issue can be addressed using potential-based
reward shaping (PBRS) (Ng, Harada, and Russell 1999), the
first two issues remain (Behboudian et al. 2021).

To avoid manual engineering of F , useful shaping rewards
must be obtained autonomously. Towards this (Zou et al.
2019) introduce an RS method that adds a shaping-reward
function prior which fits a distribution from data obtained
over many tasks. Recently, (Hu et al. 2020) use a bilevel
technique to learn a scalar coefficient for an already-given
shaping-reward function. Nevertheless, constructing F while
training can produce convergence issues since the reward
function now changes during training (Igl et al. 2020). More-
over, while F is being learned the reward can be corrupted
by inappropriate signals that hinder learning.

Curiosity Based Reward Shaping Curiosity Based Re-
ward Shaping aims to encourage the agent to explore states
by rewarding the agent for novel state visitations using ex-
ploration heuristics. One approach is to use state visitation
counts (Ostrovski et al. 2017). More elaborate approaches
such as (Burda et al. 2018) introduce a measure of state nov-
elty using the prediction error of features of the visited states
from a random network. Pathak et al. 2017 use the prediction
error of the next state from a learned dynamics model and
Houthooft et al. 2016 maximise the information gain about
the agent’s belief of the system dynamics. In general, these
methods provide no performance guarantees nor do they en-
sure the optimal policy of the underlying MDP is preserved.
Moreover, they naively reward exploration without consider-
ation of the environment reward. This can lead to spurious
objectives being maximised (see Experiment 3 in Sec. 6).

Within these two categories, closest to our work are bilevel
approaches for learning the shaping function (Hu et al. 2020;
Stadie, Zhang, and Ba 2020). Unlike Hu et al.2020 whose
method requires a useful shaping reward to begin with, ROSA
constructs a shaping reward function from scratch leading
to a fully autonomous method. Moreover, in Hu et al. 2020
and Stadie et al.2020, the agent’s policy and shaping rewards
are learned with consecutive updates. In contrast, ROSA
performs these operations concurrently leading to a faster,
more efficient procedure. Also in contrast to Hu et al. 2020
and Stadie et al. 2020, ROSA learns shaping rewards only
at relevant states, this confers high computational efficiency

(see Experiment 2, Sec. 6)). As we describe, ROSA, which
successfully learns the shaping-reward function F , uses a
similar form as PBRS. However in ROSA, F is augmented to
include the actions of another RL agent to learn the shaping
rewards online. Lastly, unlike curiosity-based methods e.g.,
(Burda et al. 2018) and (Pathak et al. 2017), our method
preserves the agent’s optimal policy for the task (see Experi-
ment 3, Sec. 6) and introduces intrinsic rewards that promote
complex learning behaviour (see Experiment 1, Sec. 6) .

3 Preliminaries & Notations
The RL problem is typically formalised as a Markov decision
process 〈S,A, P,R, γ〉 where S is the set of states, A is the
discrete set of actions, P : S ×A×S → [0, 1] is a transition
probability function describing the system’s dynamics, R :
S × A → R is the reward function measuring the agent’s
performance, and γ ∈ (0, 1] specifies the degree to which the
agent’s rewards are discounted (Sutton and Barto 2018). At
time t the system is in state st ∈ S and the agent must choose
an action at ∈ A which transitions the system to a new state
st+1 ∼ P (·|st, at) and produces a rewardR(st, at). A policy
π : S × A → [0, 1] is a distribution over state-action pairs
where π(a|s) is the probability of selecting action a ∈ A
in state s ∈ S. The agent’s goal is to find a policy π? ∈
Π that maximises its expected returns given by: vπ(s) =
E[
∑∞
t=0 γ

tR(st, at)|at ∼ π(·|st)] where Π is the agent’s
policy set. We denote this MDP by M.

Two-player Markov games A two-player Markov game
(MG) is an augmented MDP involving two agent that simulta-
neously take actions over many rounds (Shoham and Leyton-
Brown 2008). In the classical MG framework, each agent’s
rewards and the system dynamics are now influenced by the
actions of both agents. Therefore, each agent i ∈ {1, 2} has
its reward function Ri : S×A1×A2 → R and action setAi
and its goal is to maximise its own expected returns. The sys-
tem dynamics, now influenced by both agents, are described
by a transition probability P : S×A1×A2×S → [0, 1]. As
we discuss in the next section, ROSA induces a specific MG
in which the dynamics are influenced by only Controller.

Reward shaping Reward shaping (RS) seeks to promote
more efficient learning by inserting a (state dependent) shap-
ing reward function F . Denote by ṽ the objective function
that contains a shaping reward function F and by π̃ ∈ Π̃ the
corresponding policy i.e., vπ̃(s) = E[

∑∞
t=0 γ

t(R(st, at) +
F (·))|at ∼ π̃(·|st)]. Let us also denote by vπk the expected
return after k learning steps, the goal for RS can be stated as
inserting a shaping reward function F for any state s ∈ S:

C.1. vπ̃m(s) ≥ vπm(s) for any m ≥ N ,
C.2. arg max

π∈Π
ṽπ(s) ≡ arg max

π∈Π
vπ(s),

where N is some finite integer.
Condition C.1 ensures that RS produces a performance

improvement (weakly) during the learning process i.e., RS
induces more efficient learning and does not degrade perfor-
mance (note that both value functions measure the expected
return from the environment only). Lastly, Condition C.2



ensures that RS preserves the optimal policy.1
Poor choices of F hinder learning (Devlin and Kudenko

2011) in violation of (ii), and therefore RS methods gener-
ally rely on hand-crafted shaping-reward functions that are
constructed using domain knowledge (whenever available).
In the absence of a useful shaping-reward function F , the
challenge is to learn a shaping-reward function that leads to
more efficient learning while preserving the optimal policy.
The problem therefore can be stated as finding a function
F such that (i) - (iii) hold. Determining this function is a
significant challenge; poor choices can hinder the learning
process, moreover attempting to learn the shaping-function
while learning the RL agent’s policy presents convergence is-
sues given the two concurrent learning processes (Zinkevich,
Greenwald, and Littman 2006). Another issue is that using
a hyperparameter optimisation procedure to find F directly
does not make use of information generated by intermediate
state-action-reward tuples of the RL problem which can help
to guide the optimisation.

4 Our Framework
We now describe the problem setting, details of our frame-
work, and how it learns the shaping-reward function. We then
describe Controller’s and Shaper’s objectives. We also de-
scribe the switching control mechanism used by the Shaper
and the learning process for both agents.

The Shaper’s goal is to construct shaping rewards to guide
the Controller towards quickly learning π?. To do this, the
Shaper learns how to choose the values of a shaping-reward
at each state. Simultaneously, Controller performs actions to
maximise its rewards using its own policy. Crucially, the two
agents tackle distinct but complementary set problems. The
problem for Controller is to learn to solve the task by finding
its optimal policy, the problem for the Shaper is to learn how
to add shaping rewards to aid Controller. The objective for
the Controller is given by:

ṽπ,π
2

(s) = E

[ ∞∑
t=0

γt
(
R(st, at) + F̂ (a2

t , a
2
t−1)

) ∣∣∣s = s0

]
,

where at ∼ π is the Controller’s action, F̂ is the shaping-
reward function which is given by F̂ (a2

t , a
2
t−1) ≡ a2

t −
γ−1a2

t−1, a2
t : is chosen by the Shaper (and a2

t ≡ 0,∀t < 0)
using the policy π2 : S × A2 → [0, 1] where A2 is the
action set for the Shaper. Note that the shaping reward
is state dependent since the Shaper’s policy is contingent
on the state. The set A2 is a subset of Rp and can there-
fore be for example a set of integers {1, . . . ,K} for some
K ≥ 1. With this, the Shaper constructs a shaping-reward
based on the agent’s environment interaction, therefore the

1For sufficiently complex tasks, a key aim of an RS function is
to enable the agent to acquire rewards more quickly provided the
agent must learn an improvement on its initial policy that is to say
vπ̃n(s) > vπn(s) for all n ≥ N ; whenever max

π∈Π
vπ(s) > vπ0(s).

However such a condition cannot be guaranteed for all RL tasks
since it is easy to construct a trivial example in which RS is not
required and the condition would not hold.

shaping reward is tailored for the specific setting. The tran-
sition probability P : S × A × S → [0, 1] takes the state
and only the Controller’s actions as inputs. Formally, the
MG is defined by a tuple G = 〈N ,S,A,A2, P, R̂1, R̂2, γ〉
where the new elements are N = {1, 2} which is the set
of agents, R̂1 := R + F̂ is the new Controller reward func-
tion which now contains a shaping reward F̂ , the function
R̂2 : S ×A×A2 → R is the one-step reward for the Shaper
(we give the details of this function later).

As the Controller’s policy can be learned using any RL
method, ROSA easily adopts any existing RL algorithm for
the Controller. Note that unlike reward-shaping methods e.g.
(Ng, Harada, and Russell 1999), our shaping reward function
F consists of actions a2 which are chosen by the Shaper
which enables a shaping-reward function to be learned online.
We later prove an policy invariance result (Prop. 1) analogous
to that in (Ng, Harada, and Russell 1999) and show ROSA
preserves the optimal policy of the agent’s underlying MDP.

4.1 Switching Controls
So far the Shaper’s problem involves learning to construct
shaping rewards at every state including those that are irrele-
vant for guiding Controller. To increase the (computational)
efficiency of the Shaper’s learning process, we now introduce
a form of policies known as switching controls. Switching
controls enable Shaper to decide at which states to learn the
value of shaping rewards it would like to add. Therefore, now
Shaper is tasked with learning how to shape Controller’s re-
wards only at states that are important for guiding Controller
to its optimal policy. This enables Shaper to quickly deter-
mine its optimal policy2 π2 for only the relevant states unlike
Controller whose policy must learned for all states. Now at
each state Shaper first makes a binary decision to decide to
switch on its shaping reward F for the Controller. This leads
to an MG in which, unlike classical MGs, the Shaper now
uses switching controls to perform its actions.

We now describe how at each state both the decision to
activate a shaping reward and their magnitudes are deter-
mined. Recall that a2

t ∼ π2 determines the shaping reward
through F . At any st, the decision to turn on the shap-
ing reward function F is decided by a (categorical) policy
g2 : S → {0, 1}. Therefore, g2 determines whether the
Shaper policy π2 should be used to introduce a shaping re-
ward F (a2

t , a
2
t−1), a2

t ∼ π2. We denote by {τk} the times
that a switch takes place, for example, if the switch is first
turned on at state s5 then turned off at s7, then τ1 = 5 and
τ2 = 7. Recalling the role of g2, the switching times obey the
expression τk = inf{t > τk−1|st ∈ S, g2(st) = 1} and are
therefore rules that depend on the state.. The termination
times {τ2k−1} occur according to some external (probabilis-
tic) rule i.e., if at state st the shaping reward is active, then
the shaping reward terminates at state st+1 with probabil-
ity p ∈]0, 1]. Hence, by learning an optimal g2, the Shaper
learns the best states to activate F .

We now describe the new Controller objective. To describe
the presence of shaping rewards at times {τ2k}k>0 for nota-

2i.e., a policy that maximises its own objective.



tional convenience, we introduce a switch It for the shaping
rewards which takes values 0 or 1 and obeys Iτk+1

= 1− Iτk
(note that the indices are the times {τk} not the time steps
t = 0, 1, . . .) and It ≡ 0,∀t ≤ 0. With this, the new Con-
troller objective is:

ṽπ,π
2

(s0, I0) = E

[ ∞∑
t=0

γt
{
R(st, at) + F̂ (a2

t , a
2
t−1)It

}]
.

Summary of events:

At a time t ∈ 0, 1 . . .

• Both agents make an observation of the state st ∈ S.
• Controller takes an action at sampled from its policy π.
• Shaper decides whether or not to activate the shaping

reward using g2 : S → {0, 1}.
• If g2(st) = 0:

X◦ The switch is not activated (It = 0). Controller receives
a reward r ∼ R(st, at) and the system transitions to
the next state st+1.

• If g2(st) = 1:

X◦ Shaper takes an action a2
t sampled from its policy π2.

X◦ The switch is activated (It = 1), Controller receives
a reward R(st, at) + F̂ (a2

t , a
2
t−1)× 1 and the system

transitions to the next state st+1.

We set τk ≡ 0∀k ≤ 0 and a2
k ≡ 0 ∀k ≤ 0 and lastly

a2
τk
≡ 0,∀k ∈ N (a2

τk+1, . . . , a
2
τk+1−1 remain non-zero).

The first two conditions ensure the objective is well-defined
while the last condition which can be easily ensured, is used
in the proof of Prop. 1 which guarantees that the optimal
policy of the MDPM is preserved. Lastly, in what follows
we use the shorthand I(t) ≡ It.

4.2 The Shaper’s Objective
The goal of the Shaper is to guide Controller to efficiently
learn to maximise its own objective. The shaping reward F
is activated by switches controlled by the Shaper. To induce
Shaper to selectively choose when to switch on the shaping
reward, each switch activation incurs a fixed cost for the
Shaper. This ensures that the gain for the Shaper for encour-
aging Controller to visit a given set of states is sufficiently
high to merit learning optimal shaping reward magnitudes.
Given these remarks the Shaper’s objective is

vπ,π
2

2 (s0, I0) = Eπ,π2

 ∞∑
t=0

γt

R̂1 −
∞∑
k≥1

δtτ2k−1
+ L(st)

 ,
where δtτ2k−1

is the Kronecker-delta function which intro-
duces a cost for each switch, is 1 whenever t = τ2k−1 and 0
otherwise (this restricts the costs to only the points at which
the shaping reward is activated). The term L is a Shaper
bonus reward for when the Controller visits an infrequently
visited state and tends to 0 as the state is revisited.

The objective encodes the Shaper’s agenda, namely to
maximise the expected return.3 Therefore, using its shap-
ing rewards, the Shaper seeks to guide Controller towards
optimal trajectories (potentially away from suboptimal trajec-
tories, c.f. Experiment 1) and enable Controller to learn faster
(c.f. Cartpole experiment in Sec. 6). With this, the Shaper
constructs a shaping-reward function that supports the Con-
troller’s learning which is tailored for the specific setting.
This avoids inserting hand-designed exploration heuristics
into the Controller’s objective as in curiosity-based methods
(Burda et al. 2018; Pathak et al. 2017) and classical reward
shaping (Ng, Harada, and Russell 1999). We later prove that
with this objective, the Shaper’s optimal policy maximises
Controller’s (extrinsic) return (Prop. 1). Additionally, we
show that the framework preserves the optimal policy of M.

Discussion on Shaper Bonus Term L

For this there are various possibilities e.g. model prediction
error (Stadie, Levine, and Abbeel 2015), count-based explo-
ration bonus (Strehl and Littman 2008). We later show our
method performs well regardless of the choice of bonus re-
wards and outperforms RL methods in which these bonuses
are added to the agent’s objective directly (see Sec. 7).

Discussion on Computational Aspect
The switching control mechanism results in a framework
in which the problem facing the Shaper has a markedly re-
duced decision space in comparison to the Controller’s prob-
lem (though both share the same experiences). Crucially, the
Shaper must compute optimal shaping rewards at only a sub-
set of states which are chosen by g2. Moreover, the decision
space for the switching policy g2 is S × {0, 1} i.e at each
state it makes a binary decision. Consequently, the learning
process for g2 is much quicker than the Controller’s policy
which must optimise over a decision space which is |S||A|
(choosing an action from its action space at every state). This
results in the Shaper rapidly learning its optimal policies (rel-
ative to the Controller) in turn, enabling the Shaper to guide
the Controller towards its optimal policy during its learning
phase. Additionally, in our experiments, we chose the size of
the action set for the Shaper, A2 to be a singleton resulting
in a decision space of size |S|× {0, 1} for the entire problem
facing the Shaper. We later show that this choice leads to
improved performance while removing the free choice of the
dimensionality of the Shaper’s action set. Lastly, we later
prove that the optimal policy for the Shaper maximises the
Controller’s objective (Prop. 1).

4.3 The Overall Learning Procedure
The game G is solved using our multi-agent RL algorithm
(ROSA). In the next section, we show the convergence prop-
erties of ROSA. The full code is in Sec. 8 of the Appendix.
The ROSA algorithm consists of two independent procedures:
Controller learns its own policy while Shaper learns which
states to perform a switch and the shaping reward magnitudes.

3Note that we can now see that R̂2 ≡ R(st, at) +

F̂ (a2
t , a

2
t−1)It −

∑∞
k≥1 δ

t
τ2k−1

+ L(st).



In our implementation, we used proximal policy optimiza-
tion (PPO) (Schulman et al. 2017) as the learning algorithm
for all policies: Controller’s policy, switching control policy,
and the reward magnitude policy. We demonstrated ROSA
with various Shaper L terms, the first is RND (Burda et al.
2018) in which L takes the form L(st) := ‖ĥ(st)− h(st)‖22
where h is a random initialised, fixed target network while ĥ
is the predictor network that seeks to approximate the target
network. Secondly, to demonstrate the flexibility of ROSA to
perform well with even a rudimentary bonus term, we use a
simple count-based term for L, which counts the number of
times a state has been visited (see Sec. 7). The action set of
the Shaper is thus A2 := {0, 1, ...,m} where each element
is an element of N, and π2 is a MLP π2 : Rd 7→ Rm. Precise
details are in the Supplementary Material, Section 8.

5 Convergence and Optimality of ROSA
The ROSA framework enables the Shaper to learn a shaping-
reward function to assist the Controller when learning a (near-
)optimal policy. The interaction between the two RL agents
induces two concurrent learning processes, potentially rais-
ingconvergence issues (Zinkevich, Greenwald, and Littman
2006). We now show that ROSA converges and that the per-
formance of the resulting policy is similar to solving M di-
rectly. To achieve this, we first study the stable point solutions
of G. Unlike MDPs, the existence of a stable point solutions
in Markov policies is not guaranteed for MGs (Blackwell and
Ferguson 1968) and are rarely computable.4 MGs also often
have multiple stable points that can be inefficient (Mguni
et al. 2019); in G, the outcome of such stable point profiles
may be a poor performing Controller policy. To ensure the
framework is useful, we must verify that the solution of G
corresponds to M. We address the following challenges:

1. ROSA preserves the optimal policy of M.
2. A stable point of the game G in Markov policies exists.
3. ROSA converges to the stable point solution of G.
4. The convergence point of ROSA yields a payoff that is

(weakly) greater than that from solving M directly.
In proving 1–4 we deduce the following:

Theorem 1. ROSA ensures conditions C.1 and C.2.

Proofs are deferred to the Appendix.
We now give our first result that shows the solution to M

is preserved under the influence of the Shaper:
Proposition 1. The following statements hold ∀s ∈ S:

i) arg max
π∈Π

ṽπ,π
2

(s) = arg max
π∈Π

vπ(s),∀π2 ∈ Π2,

ii) The Shaper’s optimal policy maximises vπ(s).

Recall, vπ denotes the Controller’s expected return without
the influence of the Shaper. Result (i) therefore says that
the Controller’s problem is preserved under the influence of
the Shaper. Moreover the (expected) total return received
by the Controller is that from the environment. Result (ii)
establishes that the Shaper’s optimal policy induces Shaper
to maximise Controller’s extrinsic total return.

4Special exceptions are team MGs where agents share an objec-
tive and zero-sum MGs (Shoham and Leyton-Brown 2008).

The result comes from a careful adaptation of the policy
invariance result (Ng, Harada, and Russell 1999) to our multi-
agent switching control framework, where the shaping reward
is no longer added at all states. Building on Prop. 1, we find:

Corollary 1. ROSA preserves the MDP M. In particular, let
(π̂1, π̂2) be a stable point policy profile5 of the MG induced
by ROSA G. Then, π̂1 is a solution to the MDP, M.

Hence, introducing the Shaper does not alter the solution.
We next show that the solution of G can be computed as a

limit point of a sequence of Bellman operations. We use this
to show the convergence of ROSA. We define a projection P
on a function Λ by: PΛ := arg min

Λ̄∈{Ψr|r∈Rp}

∥∥Λ̄− Λ
∥∥:

Theorem 2. i) Let V : S × N → R then the game G has a
stable point which is a given by lim

k→∞
T kV π = sup

π̂∈Π
V π̂ =

V π?

, where π̂ is a stable policy profile for the MG, G and T
is the Bellman operator of G.

ii) ROSA converges to the stable point of G. More-
over, given a set of linearly independent basis functions
Ψ = {ψ1, . . . , ψp} with ψk ∈ L2,∀k, ROSA converges
to a limit point r? ∈ Rp that is the unique solution to
PF(Ψr?) = Ψr?, where F is defined by: FΛ := R̂1 +

γP max{MΛ,Λ} whereM is defined byMπ,π2

v(s, ·) :=

R̂1− 1 + γ
∑
s′∈S P (s′; aτk , s)v(s′, ·)|aτk ∼ π2 and r? sat-

isfies: ‖Ψr? −Q?‖ ≤ (1− γ2)−1/2 ‖PQ? −Q?‖.
Part i) of the theorem proves the system in which the

Shaper and Controller jointly learn has a stable point and is
the limit of a dynamic programming procedure. Crucially (by
Corollary 1), the limit point corresponds to the solution of
the MDPM. This is proven by showing that G has a dual
representation as an MDP whose solution corresponds to
the stable point of the MG. This then enables a distributed
Q-learning method (Bertsekas 2012) to tractably solve G.

Part ii) establishes the solution to G can be computed using
ROSA. This means that the Shaper converges to a shaping-
reward function and (by Prop. 1) the Controller learns the
optimal value function forM. The result also establishes the
convergence of ROSA to the solution using (linear) function
approximators and bounds the approximation error by the
smallest error achievable (given the basis functions).

Introducing poor shaping rewards can potentially worsen
overall performance. We now prove ROSA introduces shap-
ing rewards that yield higher total environment returns for
the Controller, as compared to solving M directly.

Proposition 2. There exists some finite integer N such that
vπ̃m(s) ≥ vπm(s), ∀s ∈ S for any m ≥ N , where π̃m
and πm are the respective Controller policies after the mth

learning iteration with and without the Shaper’s influence.

Note that Prop. 2 implies vπ̃(s) ≥ vπ(s), ∀s ∈ S . Prop. 2
shows that the Shaper improves outcomes for the Controller.
Additionally, unlike reward shaping methods in general, the
shaping rewards generated by the Shaper never lead to a

5By stable point profile we mean a Markov perfect equilibrium
(Fudenberg and Tirole 1991).



reduction to the total (environmental) return for Controller
(compared to the total return without F ).

Note: Prop. 2 compares the environmental (extrinsic) re-
wards accrued by the Controller. Prop. 2 therefore shows
Shaper induces a Controller policy that leads to a (weakly)
higher expected return from the environment.

6 Experiments
We performed a series of experiments to test if ROSA (1)
learns beneficial shaping-reward functions (2) decomposes
complex tasks, and (3) tailors shaping rewards to encourage
the Controller to capture environment rewards (as opposed
to merely pursuing novelty). We compared ROSA’s perfor-
mance to RND (Burda et al. 2018), ICM (Pathak et al. 2017),
LIRPG (Zheng, Oh, and Singh 2018), BiPaRS-IMGL (Hu
et al. 2020)6 and vanilla PPO (Schulman et al. 2017). We
then compared performances on performance benchmarks in-
cluding Sparse Cartpole, Gravitar, Solaris, and Super Mario.

6.1 Didatical Examples
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Figure 1: Left. Proportion of optimal and suboptimal goal ar-
rivals. ROSA has a marked inflection (arrow) where arrivals at
the sub-optimal goal decrease and arrivals at the optimal goal
increase. Shaper has learned to guide Controller to forgo the
suboptimal goal in favour of the optimal one. Right. Heatmap
showing where ROSA adds rewards.

Beneficial shaping reward. ROSA is able to learn a shaping-
reward function that leads to improved Controller perfor-
mance. In particular, it is able to learn to shape rewards that
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Figure 2: Discovering subgoals on Subgoal Maze. Left. Learn-
ing curves. Right. Heatmap of shaping rewards.

encourage the RL agent to avoid suboptimal — but easy to
learn — policies in favour of policies that attain the maximal
return. To demonstrate this, we designed a Maze environment

6BiPaRS-IMGL requires a manually crafted shaping-reward
(only available in Cartpole).

with two terminal states: a suboptimal goal state that yields a
reward of 0.5 and an optimal goal state which yields a reward
of 1. In this maze design, the sub-optimal goal is more easily
reached. A good shaping-reward function discourages the
agent from visiting the sub-optimal goal. As shown in Fig.
17 ROSA achieves this by learning to place shaping rewards
(dark green) on the path that leads to the optimal goal.

Subgoal discovery.
We used the Subgoal Maze introduced in (McGovern and
Barto 2001) to test if ROSA can discover subgoals. The envi-
ronment has two rooms separated by a gateway. To solve this,
the agent must discover the subgoal (reaching the gateway
before it can reach the goal. Rewards are −0.01 everywhere
except at the goal state where the reward is 1. As shown in
Fig. 2, ROSA successfully solves this environment whereas
other methods fail. ROSA assigns importance to reaching the
gateway, depicted by the heatmap of added shaped rewards.
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Figure 3: Red-Herring Maze. Ignoring non-beneficial shap-
ing reward. Left. Learning curves. Right. Heatmap of added
shaping rewards. ROSA ignores the RHS of the maze, while
RND incorrectly adds unuseful shaping rewards there.
Ignoring non-beneficial shaping reward. Switching con-
trol gives ROSA the power to learn when to attend to shaping
rewards and when to ignore them. This allows us to learn
to ignore “red-herrings”, i.e., unexplored parts of the state
space where there is no real environment reward, but where
surprise or novelty metrics would place high shaping rewards.
To verify this claim, we use a modified Maze environment
called Red-Herring Maze in which a large part of the state
space that has no environment reward, but with the goal and
environment reward elsewhere. Ideally, we expect that the
reward shaping method can learn to quickly ignore the large
part of the state space. Fig. 3 shows ROSA outperforms all
other baselines. Moreover, the heatmap shows that while
RND is easily dragged to reward exploring novel but non
rewarding states, ROSA learns to ignore them.

6.2 Learning Performance.
We compared ROSA with the baselines in four challenging
sparse rewards environments: Cartpole, Gravitar, Solaris, and
Super Mario. These environments vary in state representa-
tion, transition dynamics and reward sparsity. In Cartpole,

7The sum of curves for each method may be less that 1 if the
agent fails to arrive at either goal.



E
p
is

o
d
e
 L

e
n
g
th

5
0

  
  

 1
0

0
  

  
1

5
0

  
 2

0
0

2
5

0
5

0
0

E
p
is

o
d
e
 R

e
tu

rn
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

Steps
0 200 400 600

(1e3)

7
5

0

Gravitar

0 5 10 15 20

Cartpole

Steps(1e6)

1
0

0
0

  
  

  
  

  
2

0
0

0

0 5 10 15 20
Steps(1e6)

Solaris

E
p
is

o
d
e
 R

e
tu

rn

0 5 10 15 20
Steps(1e6)

E
p
is

o
d
e
 R

e
tu

rn

Super Mario

BiPars-IMGL
(Harmful shaping reward)
BiPaRS-IMGL
(Good shaping reward)

RND

PPO

ICM

LIRPG

ROSA

Figure 4: Benchmark performance.

a penalty of −1 is received only when the pole collapses;
in Super Mario Brothers the agent can go for 100s of steps
without encountering a reward. Fig. 4 shows learning curves.
ROSA either markedly outperforms the best competing base-
line (Cartpole and Gravitar) or is on par with them (Solaris
and Super Mario) showing that it is robust to the nature of the
environment and underlying sparse reward. Moreover, ROSA
does not exhibit the failure modes where after good initial
performance it deteriorates. E.g., in Solaris both ICM and
RND have good initial performance but deteriorate sharply
while ROSA’s performance remains satisfactory.

7 Ablation Studies
To understand how ROSA’s performance is affected by com-
ponents of the algorithm or hyper-parameter settings, we
ran a series of ablation experiments. All experiments in this
section were run on a simple 25x25 Gridworld in Fig. 5(a).
ROSA is an effective plug & play framework. Fig. 5(b)
show the performance of vanilla PPO and vanilla TRPO
versus their ROSA enhanced counterparts. Particularly no-
table is ROSA’s enhancement to TRPO. Both vanilla TRPO
and TRPO+ROSA perform equally well in early stages of
learning, but while vanilla TRPO seems to get stuck with
a suboptimal policy, TRPO+ROSA consistently improves
performance through learning until reaching convergence.
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((b)) ROSA is an effective plug & play framework.
Enhancing both PPO (left) and TRPO (right) with
ROSA results in marked performance gains.

ROSA delivers performance boost despite severe impair-
ments to the method. A core component of ROSA is the
exploration bonus term in the Shaper’s objective. We ran
experiments to check if ROSA can still deliver a perfor-
mance boost when this important component of the algo-

rithm is either weakened or ablated out entirely. Fig. 6 shows
performance of various versions of ROSA: one with RND
providing the exploration bonus, one with a simple count-
based measure L(s) = 1

Count(s)+1 providing the exploration
bonus, and one where the exploration bonus is ablated out
entirely. Stronger exploration bonuses such as RND enable
ROSA (PPO+ROSA (L=RND)) to provide more effective re-
ward shaping over weaker exploration bonuses (PPO+ROSA
(L=Count-based)), indicating this is an important aspect. Yet,
ROSA can still usefully benefit learners even when the explo-
ration bonus is ablated completely as shown by the fact that
(PPO+ROSA (No. L)) outperforms Vanilla PPO.
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Figure 6: Ablation study on the exploration bonus.

Tuning switching cost is important. Switching cost is a
fundamental component of switching contol methods. Lower
switching costs allow for ROSA to be less discriminatory
about where it adds shaping reward, while higher switching
costs may prevent ROSA from adding useful shaping re-
wards. Thus, for each environment this hyper-parameter must
be tuned to obtain optimal performance from ROSA. Fig. 7
shows a parameter study of end-of-training evaluation perfor-
mance of PPO+ROSA versus various values for the switch-
ing cost. As can be seen, outside of an optimum range of
values for the switching cost, approximately (−0.1,−0.01),
ROSA’s effectiveness is hampered. It is future work to inves-
tigate how this hyper-parameter should be set.
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Figure 7: Switching cost.

8 Conclusion
We presented a novel solution method to solve the problem
of reward shaping. Our Markov game framework of a pri-
mary Controller and a secondary reward shaping agent is
guaranteed to preserve the underlying learning task for the
Controller whilst guiding Controller to higher performance
policies. Moreover, ROSA is able to decompose complex
learning tasks into subgoals and to adaptively guide Con-



troller by selectively choosing the states to add shaping re-
wards. By presenting a theoretically sound and empirically ro-
bust approach to solving the reward shaping problem, ROSA
opens up the applicability of RL to a range of real-world
control problems. The most significant contribution of this
paper, however, is the novel construction that marries RL,
multi-agent RL and game theory which leads to a new solu-
tion method in RL. We believe this powerful approach can
be adopted to solve other open challenges in RL.
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8 Algorithm
Algorithm 1: Reinforcement Learning Optimising Shaping Algorithm ROSA

Input: Environment E
Initial Controller policy π0 with parameters θπ0

Initial Shaper switch policy g20 with parameters θg20
Initial Shaper action policy π2

0 with parameters θπ2
0

Neural networks h (fixed) and ĥ for RND with parameter θĥ
Buffer B
Number of rollouts Nr , rollout length T
Number of mini-batch updates Nu
Switch cost c(·), Discount factor γ, learning rate α

Output: Optimised Controller policy π∗

1 π, π2, g2 ← π0, π
2
0 , g20

2 for n = 1, Nr do
3 // Collect rollouts
4 for t = 1, T do
5 Get environment states st from E
6 Sample at from π(st)
7 Apply action at to environment E, and get reward rt and next state st+1

8 Sample gt from g2(st) // Switching control
9 if gt = 1 then

10 Sample a2
t from π2(st)

11 Sample a2
t+1 from π2(st+1)

12 rit = γa2
t+1 − a2

t // Calculate F (a2
t , a

2
t+1)

13 else
14 a2

t , r
i
t = 0, 0 // Dummy values

15 Append (st, at, gt, a
2
t , rt, r

i
t, st+1) to B

16 for u = 1, Nu do
17 Sample data (st, at, gt, a

2
t , rt, r

i
t, st+1) from B

18 if gt = 1 then
19 Set shaped reward to rst = rt + rit
20 else
21 Set shaped reward to rst = rt

22 // Update RND
23 LossRND = ||h(st)− ĥ(st)||2
24 θĥ ← θĥ − α∇LossRND
25 // Update Shaper
26 lt = ||h(st)− ĥ(st)||2 // Compute L(st)
27 ct = gt
28 Compute Lossπ2 using (st, at, gt, ct, rt, r

i
t, lt, st+1) using PPO loss // Section 4.2

29 Compute Lossg2 using (st, at, gt, ct, rt, r
i
t, lt, st+1) using PPO loss // Section 4.2

30 θπ2 ← θπ2 − α∇Lossπ2

31 θg2 ← θg2 − α∇Lossg2
32 // Update Controller
33 Compute Lossπ using (st, at, r

s
t , st+1) using PPO loss // Section 4

34 θπ ← θπ − α∇Lossπ



9 Further Implementation Details
Details of the Shaper and F (shaping reward)

Object Description
[512, ReLU, 512, ReLU, 512, m]

A2 Discrete integer action set which is size of output of f ,
i.e.,A2 is set of integers {1, ...,m}

π2 Fixed feed forward NN that maps Rd 7→ Rm
[512, ReLU, 512, ReLU, 512, m]

F γa2
t+1 - a2

t , γ = 0.95
d=Dimensionality of states; m ∈ N - tunable free parameter.



10 Experimental Details
10.1 Environments & Preprocessing Details
The table below shows the provenance of environments used in our experiments.

Atari & Cartpole https://github.com/openai/gym
Maze https://github.com/MattChanTK/gym-maze

Super Mario Brothers https://github.com/Kautenja/gym-super-mario-bros

Furthermore, we used preprocessing settings as indicated in the following table.

Setting Value

Max frames per episode Atari & Mario→ 18000 / Maze & Cartpole→ 200
Observation concatenation Preceding 4 observations
Observation preprocessing Standardization followed by clipping to [-5, 5]

Observation scaling Atari & Mario→ (84, 84, 1) / Maze & Cartpole→ None
Reward (extrinsic and intrinsic) preprocessing Standardization followed by clipping to [-1, 1]

https://github.com/openai/gym
https://github.com/MattChanTK/gym-maze
https://github.com/Kautenja/gym-super-mario-bros


10.2 Hyperparameter Settings
In the table below we report all hyperparameters used in our experiments. Hyperparameter values in square brackets indicate
ranges of values that were used for performance tuning.

Clip Gradient Norm 1
γE 0.99
λ 0.95

Learning rate 1x10−4

Number of minibatches 4
Number of optimization epochs 4

Policy architecture CNN (Mario/Atari) or MLP (Cartpole/Maze)
Number of parallel actors 2 (Cartpole/Maze) or 20 (Mario/Atari)
Optimization algorithm Adam

Rollout length 128
Sticky action probability 0.25

Use Generalized Advantage Estimation True

Coefficient of extrinsic reward [1, 5]
Coefficient of intrinsic reward [1, 2, 5, 10, 20, 50]

γI 0.99
Probability of terminating option [0.5, 0.75, 0.8, 0.9, 0.95]

RND output size [2, 4, 8, 16, 32, 64, 128, 256]



11 Ablation Studies
Ablation Study 1: Adaption of ROSA to Different Controller Policies
We claimed Shaper can design a reward-shaping scheme that can adapt its shaping reward guidance of the Controller (to achieve
the optimal policy) according to the Controller’s (RL) policy.

To test this claim, we tested two versions of our agent in a corridor Maze. The maze features two goal states that are equidistant
from the origin, one is a suboptimal goal with a reward of 0.5 and the other is an optimal goal which has a reward 1. There is
also a fixed cost for each non-terminal transition. We tested this scenario with two versions of our controller: one with a standard
RL Controller policy and another version in which the actions of the Controller are determined by a high entropy policy, we call
this version of the Controller the high entropy controller.8 The high entropy policy induces actions that may randomly push
Controller towards the suboptimal goal. Therefore, in order to guide Controller to the optimal goal state, we expect Shaper to
strongly shape the rewards of the Controller to guide Controller away from the suboptimal goal (and towards the optimal goal).
Figure 8 shows heatmaps of the added intrinsic reward (darker colours indicate higher intrinsic rewards) for the two versions of
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Figure 8: Responsiveness to Controller policies

the Controller. With the standard policy controller, the intrinsic reward is maximal in the state to the right of the origin indicating
that the Shaper determines that these shaping rewards are sufficient to guide Controller towards the optimal goal state. For the
high entropy controller, the Shaper introduces high intrinsic rewards to the origin state as well as states beneath the origin. These
rewards serve to counteract the random actions taken by the high-entropy policy that lead Controller towards the suboptimal goal
state. It can therefore be seen that the Shaper adapts the shaping rewards according to the type of Controller it seeks to guide.

Ablation Study 2: Switching Controls
Switching controls enable ROSA to be selective of states to which intrinsic rewards are added. This improves learnability
(specifically, by reducing the computational complexity) of the learning task for the Shaper as there are fewer states where it
must learn the optimal intrinsic reward to add to the Controller objective.

To test the effect of this feature on the performance of ROSA, we compared ROSA to a modified version in which the Shaper
must add intrinsic rewards to all states. That is, for this version of ROSA we remove the presence of the switching control
mechanism for the Shaper. Figure 9 shows learning curves on the Maze environment used in the "Optimality of shaping reward"
experiments in Section 6. As expected, the agent with the version of ROSA with switching controls learns significantly faster
than the agent that uses the version of ROSA sans the switching control mechanism. For example, it takes the agent that has no
switching control mechanism almost 50,000 more steps to attain an average episode return of 0.5 as compared against the agent
that uses the version of our algorithm with switching controls.

This illustrates a key benefit of switching controls which is to reduce the computational burden on Shaper (as it does not need
to model the effects of adding intrinsic rewards in all states) which in turn leads to both faster computation of solutions and
improved performance by the Controller. Moreover, Maze is a relatively simple environment, expectedly the importance of the
switching control is amplified in more complex environments.

Our reward-shaping method features a mechanism to selectively pick states to which intrinsic rewards are added. It also adapts
its shaping rewards according to the Controller’s learning process. In this section, we present the results of experiments in which
we ablated each of these components. In particular, we test the performance of ROSA in comparison to a version of ROSA with
the switching mechanism removed. We then present the result of an experiment in which we investigated the ability of ROSA to
adapt to different behaviour of the Controller.

8To generate this policy, we artificially increased the entropy by adjusting the temperature of a softmax function on the policy logits.
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12 Notation & Assumptions
We assume that S is defined on a probability space (Ω,F ,P) and any s ∈ S is measurable with respect to the Borel σ-algebra
associated with Rp. We denote the σ-algebra of events generated by {st}t≥0 by Ft ⊂ F . In what follows, we denote by (V, ‖‖)
any finite normed vector space and byH the set of all measurable functions.

The results of the paper are built under the following assumptions which are standard within RL and stochastic approximation
methods:

Assumption 1 The stochastic process governing the system dynamics is ergodic, that is the process is stationary and every
invariant random variable of {st}t≥0 is equal to a constant with probability 1.

Assumption 2 The constituent functions of the players’ objectives R, F and L are in L2.
Assumption 3 For any positive scalar c, there exists a scalar µc such that for all s ∈ S and for any t ∈ N we have:

E [1 + ‖st‖c|s0 = s] ≤ µc(1 + ‖s‖c).
Assumption 4 There exists scalars C1 and c1 such that for any function J satisfying |J(s)| ≤ C2(1 + ‖s‖c2) for some scalars

c2 and C2 we have that:
∑∞
t=0 |E [J(st)|s0 = s]− E[J(s0)]| ≤ C1C2(1 + ‖st‖c1c2).

Assumption 5 There exists scalars c and C such that for any s ∈ S we have that: |J(z, ·)| ≤ C(1 + ‖z‖c) for J ∈ {R,F, L}.
We also make the following finiteness assumption on set of switching control policies for the Shaper:
Assumption 6 For any policy gc, the total number of interventions is given by K <∞.
Assumption 7 Let n(s) be the state visitation count for a given state s ∈ S. For any a ∈ A, the function L(s) = 0 for any

n(s) ≥M where 0 < M ≤ ∞.



13 Proof of Technical Results
We begin the analysis with some preliminary lemmata and definitions which are useful for proving the main results.

Definition 1. A.1 An operator T : V → V is a contraction with respect to a norm ‖ · ‖ if there exists some constant c ∈ [0, 1[
such that for any V1, V2 ∈ V the following inequality holds:

‖TV1 − TV2‖ ≤ c‖V1 − V2‖. (1)

Definition 2. A.2 An operator T : V → V is non-expansive if ∀V1, V2 ∈ V we have:

‖TV1 − TV2‖ ≤ ‖V1 − V2‖. (2)

Lemma 1. For any f : V → R, g : V → R, we have that:∥∥∥∥max
a∈V

f(a)−max
a∈V

g(a)

∥∥∥∥ ≤ max
a∈V

‖f(a)− g(a)‖ . (3)

Proof. We provide the straightforward proof of the result given in (Mguni 2019):

f(a) ≤ ‖f(a)− g(a)‖+ g(a) (4)
=⇒ max

a∈V
f(a) ≤ max

a∈V
{‖f(a)− g(a)‖+ g(a)} ≤ max

a∈V
‖f(a)− g(a)‖+ max

a∈V
g(a). (5)

Subtracting max
a∈V

g(a) from both sides of (5) gives:

max
a∈V

f(a)−max
a∈V

g(a) ≤ max
a∈V
‖f(a)− g(a)‖ . (6)

After reversing the roles of f and g and performing identical steps (4) - (5), we derive the desired result since the RHS of (6) is
unchanged.

Lemma 2. A.4 The probability transition kernel P is non-expansive, that is we have that:

‖PV1 − PV2‖ ≤ ‖V1 − V2‖. (7)

Proof. This is a well-known result (Tsitsiklis and Van Roy 1999). We state a proof using the Tonelli-Fubini theorem and the
iterated law of expectations. Indeed, we observe that:

‖PJ‖2 = E
[
(PJ)2[s0]

]
= E

(
[E [J [s1]|s0])

2
]
≤ E

[
E
[
J2[s1]|s0

]]
= E

[
J2[s1]

]
= ‖J‖2,

where we have used Jensen’s inequality. This completes the proof.

Proof of Theorem 1
Proof of Proposition 1
Proof. Proof of Prop 1. To prove (i) of the proposition it suffices to prove that the term

∑T
t=0 γ

tF (θt, θt−1)I(t) converges to 0
in the limit as T →∞. As in classic potential-based reward shaping (Ng, Harada, and Russell 1999), central to this observation
is the telescoping sum that emerges by construction of F .

First recall ṽπ,π
2

(s, I0), for any (s, I0) ∈ S × {0, 1} is given by:

ṽπ,π
2

(s, I0) = Eπ,π2

[ ∞∑
t=0

γt
{
R(st, at) + F̂ (a2

t , a
2
t−1)It

}]
(8)

= Eπ,π2

[ ∞∑
t=0

γtR(st, at) +

∞∑
t=0

γtF̂ (a2
t , a

2
t−1)It

]
(9)

= Eπ,π2

[ ∞∑
t=0

γtR(st, at)

]
+ Eπ,π2

[ ∞∑
t=0

γtF̂ (a2
t , a

2
t−1))It

]
. (10)

where It ≡ I(t) for any t = 0, 1 . . ..

Hence it suffices to prove that Eπ,π2

[∑∞
t=0 γ

tF̂ (a2
t , a

2
t−1))It

]
= 0.



Recall there a number of time steps that elapse between τk and τk+1, now

∞∑
t=0

γtF̂ (a2
t , a

2
t−1))I(t)

=

τ2∑
t=τ1+1

γta2
t − γt−1a2

t−1 + γτ1a2
τ1 +

τ4∑
t=τ3+1

γta2
t − γt−1a2

t−1 + γτ3a2
τ3

+ . . .+

τ2k∑
t=τ(2k−1)+1

γta2
t − γt−1a2

t−1 + γτ1a2
τ2k+1

+ . . .+

=

τ2−1∑
t=τ1

γt+1a2
t+1 − γta2

t + γτ1a2
τ1 +

τ4−1∑
t=τ3

γt+1a2
t+1 − γta2

t + γτ3a2
τ3

+ . . .+

τ2K−1∑
t=τ(2k−1)

γta2
t − γt−1a2

t−1 + γτ2k−1a2
τ2k−1

+ . . .+

=

∞∑
k=1

τ2K−1∑
t=τ2k−1

γt+1a2
t+1 − γta2

t −
∞∑
k=1

γτ2k−1a2
τ2k−1

=

∞∑
k=1

γτ2ka2
τ2k
−
∞∑
k=1

γτ2k−1a2
τ2k−1

=

∞∑
k=1

γτ2k0−
∞∑
k=1

γτ2k−10 = 0,

where we have used the fact that by construction a2
t ≡ 0 whenever t = τ1, τ2, . . ..

In what follows, for any state s ∈ S, we denote by Ln(s) the value of L(s) when the state s has been visited n = 0, 1, . . .
times.

We now note that it is easy to see that vπ,π
2

2 (s0, I0) is bounded above, indeed using the above we have that

vπ,π
2

2 (s0, I0) = Eπ,π2

 ∞∑
t=0

γt

R̂−∑
k≥1

δtτ2k−1
+ Ln(st)

 (11)

= Eπ,π2

 ∞∑
t=0

γt

R−∑
k≥1

δtτ2k−1
+ Ln(st)

+

∞∑
t=0

γtF̂ It

 (12)

≤ Eπ,π2

[ ∞∑
t=0

γt (R+ Ln(st))

]
(13)

≤

∣∣∣∣∣Eπ,π2

[ ∞∑
t=0

γt (R+ Ln(st))

]∣∣∣∣∣ (14)

≤ Eπ,π2

[ ∞∑
t=0

γt ‖R+ Ln‖

]
(15)

≤
∞∑
t=0

γt (‖R‖+ ‖Ln‖) (16)

=
1

1− γ
(‖R‖+ ‖L‖) , (17)

using the triangle inequality, the definition of R̂ and the (upper-)boundedness of L and R (Assumption 5). We now note that by



the dominated convergence theorem we have that ∀(s0, I0) ∈ S × {0, 1} that

lim
n→∞

vπ,π
2

2 (s0, I0) = lim
n→∞

Eπ,π2

 ∞∑
t=0

γt

R̂−∑
k≥1

δtτ2k−1
+ Ln(st)

 (18)

= Eπ,π2 lim
n→∞

 ∞∑
t=0

γt

R̂−∑
k≥1

δtτ2k−1
+ Ln(st)

 (19)

= Eπ,π2

 ∞∑
t=0

γt

R̂−∑
k≥1

δtτ2k−1

 (20)

= Eπ,π2

 ∞∑
t=0

γt

R−∑
k≥1

δtτ2k−1

 = − K

1− γ
+ vπ(s0), (21)

using Assumption 6 in the last step, after which we deduce (i).
To deduce (ii) we simply note that vπ,π

2

2 (s0, I0) and vπ(s0) differ by only a constant and hence share the same optimisation.

Proof of Theorem 2
Proof. Theorem 2 is proved by firstly showing that when the players jointly maximise the same objective there exists a fixed
point equilibrium of the game when all players use Markov policies and Shaper uses switching control. The proof then proceeds
by showing that the MG G admits a dual representation as an MG in which jointly maximise the same objective which has a
stable point that can be computed by solving an MDP. Thereafter, we use both results to prove the existence of a fixed point for
the game as a limit point of a sequence generated by successively applying the Bellman operator to a test function.

Therefore, the scheme of the proof is summarised with the following steps:

I) Prove that the solution to Markov Team games (that is games in which both players maximise identical objectives) in which
one of the players uses switching control is the limit point of a sequence of Bellman operators (acting on some test function).

II) Prove that for the MG G that is there exists a function Bπ,π
2

: S × {0, 1} → R such that9 vπ,π
2

i (z) − vπ
′,π2

i (z) =

Bπ,π
2

(z)−Bπ′,π2

(z), ∀z ≡ (s, I0) ∈ S × {0, 1},∀i ∈ {1, 2}.
III) Prove that the MG G has a dual representation as a Markov Team Game which admits a representation as an MDP.

Proof of Part I
We begin by defining some objects which are central to the analysis. For any π ∈ Π and π2 ∈ Π2, given a function V π,π

2

:

S × N→ R, we define the intervention operatorMπ,π2

by

Mπ,π2

V π,π
2

(sτk , I(τk)) := R̂1(sτk , I(τk), aτk , a
2
τk
, ·)− 1 + γ

∑
s′∈S

P (s′; aτk , s)V
π,π2

(s′, I(τk+1)) (22)

for any sτk ∈ S and ∀τk where aτk ∼ π(·|sτk) and where a2
τk
∼ π2(·|sτk).

We define the Bellman operator T of the game G by

TV π,π
2

(sτk , I(τk)) := max
{
Mπ,π2

V (sτk , I(τk)), R(sτk , a) + γmax
a∈A

∑
s′∈S

P (s′; a, sτk)V (s′, I(τk))
}
. (23)

Our first result proves that the operator T is a contraction operator. First let us recall that the switching time τk is defined
recursively τk = inf{t > τk−1|st ∈ A, τk ∈ Ft} where A = {s ∈ S,m ∈ M |g2(m|st) > 0}. To this end, we show that the
following bounds holds:

Lemma 3. The Bellman operator T is a contraction, that is the following bound holds:

‖Tv − Tv′‖ ≤ γ ‖v − v′‖ .

for any v ∈ L2.
9This property is analogous to the condition in Markov potential games (Macua, Zazo, and Zazo 2018; Mguni et al. 2021)



Proof. Recall we define the Bellman operator T of G acting on a function v : S × N→ R by

Tv(sτk , I(τk)) := max

{
Mπ,π2

v(sτk , I(τk)),

[
R(sτk , a) + γmax

a∈A

∑
s′∈S

P (s′; a, sτk)v(s′, I(τk))

]}
(24)

In what follows and for the remainder of the script, we employ the following shorthands:

Pass′ =:
∑
s′∈S

P (s′; a, s), Pπss′ =:
∑
a∈A

π(a|s)Pass′ , Rπ(zt) :=
∑
at∈A

π(at|s)R̂(zt, at, θt, θt−1)

To prove that T is a contraction, we consider the three cases produced by (24), that is to say we prove the following statements:

i)
∣∣∣∣Θ(zt, a, a

2
t , a

2
t−1) + γmax

a∈A
Pas′stv(s′, ·)−

(
Θ(zt, a, a

2
t , a

2
t−1) + γmax

a∈A
Pas′stv

′(s′, ·)
)∣∣∣∣ ≤ γ ‖v − v′‖

ii)
∥∥∥Mπ,π2

v −Mπ,π2

v′
∥∥∥ ≤ γ ‖v − v′‖ , (and henceM is a contraction).

iii)
∥∥∥∥Mπ,π2

v −
[
Θ(·, a) + γmax

a∈A
Pav′

]∥∥∥∥ ≤ γ ‖v − v′‖ . where zt ≡ (st, It) ∈ S × {0, 1}.

We begin by proving i).
Indeed, for any a ∈ A and ∀zt ∈ S × {0, 1},∀θt, θt−1 ∈ Θ,∀s′ ∈ S we have that∣∣∣∣Θ(zt, a, a

2
t , a

2
t−1) + γPπs′stv(s′, ·)−

[
Θ(zt, a, a

2
t , a

2
t−1) + γmax

a∈A
Pas′stv

′(s′, ·)
]∣∣∣∣

≤ max
a∈A

∣∣γPas′stv(s′, ·)− γPas′stv
′(s′, ·)

∣∣
≤ γ ‖Pv − Pv′‖
≤ γ ‖v − v′‖ ,

again using the fact that P is non-expansive and Lemma 1.
We now prove ii).
For any τ ∈ F , define by τ ′ = inf{t > τ |st ∈ A, τ ∈ Ft}. Now using the definition ofM we have that for any sτ ∈ S∣∣∣(Mπ,π2

v −Mπ,π2

v′)(sτ , I(τ))
∣∣∣

≤ max
aτ ,a2τ ,a

2
τ−1∈A×Θ2

∣∣∣∣∣Θ(zτ , aτ , a
2
τ , a

2
τ−1)− 1 + γPπs′sτP

av(sτ , I(τ ′))

−
(
Θ(zτ , aτ , a

2
τ , a

2
τ−1)− 1 + γPπs′sτP

av′(sτ , I(τ ′))
) ∣∣∣∣∣

= γ
∣∣Pπs′sτPav(sτ , I(τ ′))− Pπs′sτP

av′(sτ , I(τ ′))
∣∣

≤ γ ‖Pv − Pv′‖
≤ γ ‖v − v′‖ ,

using the fact that P is non-expansive. The result can then be deduced easily by applying max on both sides.
We now prove iii). We split the proof of the statement into two cases:
Case 1:

Mπ,π2

v(sτ , I(τ))−
(

Θ(zτ , aτ , a
2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ))

)
< 0. (25)



We now observe the following:

Mπ,π2

v(sτ , I(τ))−Θ(zτ , aτ , a
2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ))

≤ max
{

Θ(zτ , aτ , a
2
τ , a

2
τ−1) + γPπs′sτP

av(s′, I(τ)),Mπ,π2

v(sτ , I(τ))
}

−Θ(zτ , aτ , a
2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ))

≤

∣∣∣∣∣max
{

Θ(zτ , aτ , a
2
τ , a

2
τ−1) + γPπs′sτP

av(s′, I(τ)),Mπ,π2

v(sτ , I(τ))
}

−max

{
Θ(zτ , aτ , a

2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ)),Mπ,π2

v(sτ , I(τ))

}
+ max

{
Θ(zτ , aτ , a

2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ)),Mπ,π2

v(sτ , I(τ))

}
−Θ(zτ , aτ , a

2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ))

∣∣∣∣∣
≤

∣∣∣∣∣max

{
Θ(zτ , aτ , a

2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v(s′, I(τ)),Mπ,π2

v(sτ , I(τ))

}

−max

{
Θ(zτ , aτ , a

2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ)),Mπ,π2

v(sτ , I(τ))

} ∣∣∣∣∣
+

∣∣∣∣∣max

{
Θ(zτ , aτ , a

2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ)),Mπ,π2

v(sτ , I(τ))

}

−Θ(zτ , aτ , a
2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ))

∣∣∣∣∣
≤ γmax

a∈A

∣∣Pπs′sτPav(s′, I(τ))− Pπs′sτP
av′(s′, I(τ))

∣∣
+

∣∣∣∣max

{
0,Mπ,π2

v(sτ , I(τ))−
(

Θ(zτ , aτ , a
2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ))

)}∣∣∣∣
≤ γ ‖Pv − Pv′‖
≤ γ‖v − v′‖,

where we have used the fact that for any scalars a, b, c we have that |max{a, b} −max{b, c}| ≤ |a− c| and the non-
expansiveness of P .

Case 2:

Mπ,π2

v(sτ , I(τ))−
(

Θ(zτ , aτ , a
2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ))

)
≥ 0.

Mπ,π2

v(sτ , I(τ))−
(

Θ(zτ , aτ , a
2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ))

)
≤Mπ,π2

v(sτ , I(τ))−
(

Θ(zτ , aτ , a
2
τ , a

2
τ−1) + γmax

a∈A
Pas′sτ v

′(s′, I(τ))

)
+ 1

≤ Θ(zτ , aτ , a
2
τ , a

2
τ−1)− 1 + γPπs′sτP

av(s′, I(τ ′))

−
(

Θ(zτ , aτ , a
2
τ , a

2
τ−1)− 1 + γmax

a∈A
Pas′sτ v

′(s′, I(τ))

)
≤ γmax

a∈A

∣∣Pπs′sτPa (v(s′, I(τ ′))− v′(s′, I(τ)))
∣∣

≤ γ |v(s′, I(τ ′))− v′(s′, I(τ))|
≤ γ ‖v − v′‖ ,



again using the fact that P is non-expansive. Hence we have succeeded in showing that for any v ∈ L2 we have that∥∥∥∥Mπ,π2

v −max
a∈A

[R(·, a) + γPav′]
∥∥∥∥ ≤ γ ‖v − v′‖ . (26)

Gathering the results of the three cases gives the desired result.

Proof of Part II
To prove Part II, we prove the following result:

Proposition 3. For any π ∈ Π and for any Shaper policy π2, there exists a function Bπ,π
2

: S × {0, 1} → R such that

vπ,π
2

i (z)− vπ
′,π2

i (z) = Bπ,π
2

(z)−Bπ
′,π2

(z), ∀z ≡ (s, I0) ∈ S × {0, 1} (27)

where in particular the function B is given by:

Bπ,π
2

(s0, I0) = Eπ,π2

[ ∞∑
t=0

γtR

]
, (28)

for any (s0, I0) ∈ S × {0, 1}.

Proof. Note that by the deduction of (ii) in Prop 1, we may consider the following quantity for the Shaper expected return:

v̂π,π
2

2 (s0, I0) = Eπ,π2

 ∞∑
t=0

γt

R−∑
k≥1

δtτ2k−1

 . (29)

Therefore, we immediately observe that

v̂π,π
2

2 (s0, I0) = Bπ,π
2

(s0, I0)−K, ∀(s0, I0) ∈ S × {0, 1}. (30)

We therefore immediately deduce that for any two Shaper policies π2 and π′2 the following expression holds ∀(s0, I0) ∈
S × {0, 1}:

v̂π,π
2

2 (s0, I0)− v̂π,π
′2

2 (s0, I0) = Bπ,π
2

(s0, I0)−Bπ,π
′2

(s0, I0). (31)

Our aim now is to show that the following expression holds ∀(s0, I0) ∈ S × {0, 1}:

vπ,π
2

(I0, s0)− vπ
′,π2

(I0, s0) = Bπ,π
2

(I0, s0)−Bπ
′,π2

(I0, s0), ∀i ∈ N

This is manifest from the construction of B.

Proof of Part III
We begin by recalling that a Markov strategy is a policy πi : S ×Ai → [0, 1] which requires as input only the current system
state (and not the game history or the other player’s action or strategy (Mguni 2018)). With this, we give a formal description of
the stable points of G in Markov strategies.

Definition 3. A policy profile π̂ = (π̂1, π̂2) ∈ Π is a Markov perfect equilibrium (MPE) if the following holds ∀i 6= j ∈
{1, 2}, ∀π̂′ ∈ Πi: v

(π̂i,π̂j)
i (s0, I0) ≥ v(π̂′,π̂j)

i (s0, I0),∀(s0, I0) ∈ S × {0, 1}.

The MPE describes a configuration in policies in which no player can increase their payoff by changing (unilaterally) their
policy. Crucially, it defines the stable points to which independent learners converge (if they converge at all).

Proposition 4. The following implication holds:

σ ∈ arg sup
g′,π′∈Π

Bg
′,π′

(s) =⇒ σ ∈ NE{G}. (32)

where B is the function in Prop. 3.

Prop. 4 indicates that the game has an equivalent representation in which all agents maximise the same function and thus play
a team game.



Proof. We do the proof by contradiction. Let σ = (π, π2, g) ∈ arg sup
π′∈Π,π2∈Π2,g′

Bπ
′,π;2,g′(s) for any s ∈ S . Let us now therefore

assume that σ /∈ NE{G}, hence there exists some other policy profile σ̃ = (π̃, g) which contains at least one profitable deviation
in policy by the Controller so that π′ 6= π and vπ

′,π2,g(s) > vπ,π
2,g(s) (using the preservation of signs of integration). Prop.

3 however implies that Bπ
′,π2,g(s)− Bπ,π2,g(s) > 0 which is a contradiction since σ = (π, π2, g) is a maximum of B. The

proof can be straightforwardly adapted to cover the case in which the deviating agent is the Shaper after which we deduce the
desired result.

To prove part ii), we make use of the following result:

Theorem 3 (Theorem 1, pg 4 in (Jaakkola, Jordan, and Singh 1994)). Let Ξt(s) be a random process that takes values in Rn
and given by the following:

Ξt+1(s) = (1− αt(s)) Ξt(s)αt(s)Lt(s), (33)

then Ξt(s) converges to 0 with probability 1 under the following conditions:

i) 0 ≤ αt ≤ 1,
∑
t αt =∞ and

∑
t αt <∞

ii) ‖E[Lt|Ft]‖ ≤ γ‖Ξt‖, with γ < 1;
iii) Var [Lt|Ft] ≤ c(1 + ‖Ξt‖2) for some c > 0.

Proof. To prove the result, we show (i) - (iii) hold. Condition (i) holds by choice of learning rate. It therefore remains to prove
(ii) - (iii). We first prove (ii). For this, we consider our variant of the Q-learning update rule:

Qt+1(st, It, at) = Qt(st, It, at)

+αt(st, It, at)

[
max

{
Mπ,π2

Q(sτk , Iτk , a), φ(sτk , a) + γmax
a′∈A

Q(s′, Iτk , a
′)

}

−Qt(st, It, at)

]
.

After subtracting Q?(st, It, at) from both sides and some manipulation we obtain that:

Ξt+1(st, It, at)

= (1− αt(st, It, at))Ξt(st, It, at)

+αt(st, It, at))

[
max

{
Mπ,π2

Q(sτk , Iτk , a), φ(sτk , a) + γmax
a′∈A

Q(s′, Iτk , a
′)

}

−Q?(st, It, at)

]
,

where Ξt(st, It, at) := Qt(st, It, at)−Q?(st, It, at).
Let us now define by

Lt(sτk , Iτk , a) := max

{
Mπ,π2

Q(sτk , Iτk , a), φ(sτk , a) + γmax
a′∈A

Q(s′, Iτk , a
′)

}
−Q?(st, It, a).

Then

Ξt+1(st, It, at) = (1− αt(st, It, at))Ξt(st, It, at) + αt(st, It, at)) [Lt(sτk , a)] . (34)

We now observe that

E [Lt(sτk , Iτk , a)|Ft]

=
∑
s′∈S

P (s′; a, sτk) max

{
Mπ,π2

Q(sτk , Iτk , a), φ(sτk , a) + γmax
a′∈A

Q(s′, Iτk , a
′)

}
−Q?(sτk , a)

= TφQt(s, Iτk , a)−Q?(s, Iτk , a). (35)



Now, using the fixed point property that implies Q? = TφQ
?, we find that

E [Lt(sτk , Iτk , a)|Ft] = TφQt(s, Iτk , a)− TφQ?(s, Iτk , a)

≤ ‖TφQt − TφQ?‖
≤ γ ‖Qt −Q?‖∞ = γ ‖Ξt‖∞ . (36)

using the contraction property of T established in Lemma 3. This proves (ii).
We now prove iii), that is

Var [Lt|Ft] ≤ c(1 + ‖Ξt‖2). (37)

Now by (35) we have that

Var [Lt|Ft] = Var

[
max

{
Mπ,π2

Q(sτk , Iτk , a), φ(sτk , a) + γmax
a′∈A

Q(s′, Iτk , a
′)

}
−Q?(st, It, a)

]
= E

[(
max

{
Mπ,π2

Q(sτk , Iτk , a), φ(sτk , a) + γmax
a′∈A

Q(s′, Iτk , a
′)

}

−Q?(st, It, a)− (TΦQt(s, Iτk , a)−Q?(s, Iτk , a))

)2]

= E

[(
max

{
Mπ,π2

Q(sτk , Iτk , a), φ(sτk , a) + γmax
a′∈A

Q(s′, Iτk , a
′)

}
− TΦQt(s, Iτk , a)

)2
]

= Var

[
max

{
Mπ,π2

Q(sτk , Iτk , a), φ(sτk , a) + γmax
a′∈A

Q(s′, Iτk , a
′)

}
− TΦQt(s, Iτk , a))2

]
≤ c(1 + ‖Ξt‖2),

for some c > 0 where the last line follows due to the boundedness of Q (which follows from Assumptions 2 and 4). This
concludes the proof of the Theorem.



Proof of Convergence with Linear Function Approximation
First let us recall the statement of the theorem:

Theorem 3. ROSA converges to a limit point r? which is the unique solution to the equation:
ΠF(Φr?) = Φr?, a.e. (38)

where we recall that for any test function v ∈ V , the operator F is defined by Fv := Θ + γP max{Mv, v}.
Moreover, r? satisfies the following:

‖Φr? −Q?‖ ≤ c ‖ΠQ? −Q?‖ . (39)
The theorem is proven using a set of results that we now establish. To this end, we first wish to prove the following bound:

Lemma 4. For any Q ∈ V we have that
‖FQ−Q′‖ ≤ γ ‖Q−Q′‖ , (40)

so that the operator F is a contraction.

Proof. Recall, for any test function Λ ∈ L2 , a projection operator P acting v is defined by the following
PΛ := arg min

Λ̄∈{Φr|r∈Rp}

∥∥Λ̄− Λ
∥∥ .

Now, we first note that in the proof of Lemma 3, we deduced that for any Λ ∈ L2 we have that∥∥∥∥MΛ−
[
R(·, a) + γmax

a∈A
PaΛ′

]∥∥∥∥ ≤ γ ‖Λ− Λ′‖ ,

(c.f. Lemma 3).
Setting Λ = Q and ψ = Θ, it can be straightforwardly deduced that for any Q, Q̂ ∈ L2:

∥∥∥MQ− Q̂
∥∥∥ ≤ γ ∥∥∥Q− Q̂∥∥∥. Hence,

using the contraction property ofM, we readily deduce the following bound:

max
{∥∥∥MQ− Q̂

∥∥∥ ,∥∥∥MQ−MQ̂
∥∥∥} ≤ γ ∥∥∥Q− Q̂∥∥∥ , (41)

We now observe that F is a contraction. Indeed, since for any Q,Q′ ∈ L2 we have that:
‖FQ− FQ′‖ = ‖Θ + γP max{MQ,Q} − (Θ + γP max{MQ′, Q′})‖

= γ ‖P max{MQ,Q} − P max{MQ′, Q′}‖
≤ γ ‖max{MQ,Q} −max{MQ′, Q′}‖
≤ γ ‖max{MQ−MQ′, Q−MQ′,MQ−Q′, Q−Q′}‖
≤ γmax{‖MQ−MQ′‖ , ‖Q−MQ′‖ , ‖MQ−Q′‖ , ‖Q−Q′‖}
= γ ‖Q−Q′‖ ,

using (41) and again using the non-expansiveness of P .

We next show that the following two bounds hold:

Lemma 5. For any Q ∈ V we have that

i)
∥∥PFQ− PFQ̄∥∥ ≤ γ ∥∥Q− Q̄∥∥,

ii) ‖Φr? −Q?‖ ≤ 1√
1−γ2

‖PQ? −Q?‖.

Proof. The first result is straightforward since as P is a projection it is non-expansive and hence:∥∥PFQ− PFQ̄∥∥ ≤ ∥∥FQ− FQ̄
∥∥ ≤ γ ∥∥Q− Q̄∥∥ ,

using the contraction property of F. This proves i). For ii), we note that by the orthogonality property of projections we have that
〈Φr? − PQ?,Φr? − PQ?〉, hence we observe that:

‖Φr? −Q?‖2 = ‖Φr? − PQ?‖2 + ‖Φr? − PQ?‖2

= ‖PFΦr? − PQ?‖2 + ‖Φr? − PQ?‖2

≤ ‖FΦr? −Q?‖2 + ‖Φr? − PQ?‖2

= ‖FΦr? − FQ?‖2 + ‖Φr? − PQ?‖2

≤ γ2 ‖Φr? −Q?‖2 + ‖Φr? − PQ?‖2 ,
after which we readily deduce the desired result.



Lemma 6. Define the operator H by the following: HQ(z) =

{
MQ(z), ifMQ(z) > Φr?,

Q(z), otherwise,
and F̃ by: F̃Q := Θ + γPHQ.

For any Q, Q̄ ∈ L2 we have that ∥∥∥F̃Q− F̃Q̄
∥∥∥ ≤ γ ∥∥Q− Q̄∥∥ (42)

and hence F̃ is a contraction mapping.

Proof. Using (41), we now observe that∥∥∥F̃Q− F̃Q̄
∥∥∥ =

∥∥Θ + γPHQ−
(
Θ + γPHQ̄

)∥∥
≤ γ

∥∥HQ−HQ̄∥∥
≤ γ

∥∥max
{
MQ−MQ̄,Q− Q̄,MQ− Q̄,MQ̄−Q

}∥∥
≤ γmax

{∥∥MQ−MQ̄
∥∥ ,∥∥Q− Q̄∥∥ ,∥∥MQ− Q̄

∥∥ ,∥∥MQ̄−Q
∥∥}

≤ γmax
{
γ
∥∥Q− Q̄∥∥ ,∥∥Q− Q̄∥∥ ,∥∥MQ− Q̄

∥∥ ,∥∥MQ̄−Q
∥∥}

= γ
∥∥Q− Q̄∥∥ ,

again using the non-expansive property of P .

Lemma 7. Define by Q̃ := Θ + γPvP̃ where

vπ̃(z) := Θ(sτk , a) + γmax
a∈A

∑
s′∈S

P (s′; a, sτk)Φr?(s′, I(τk)), (43)

then Q̃ is a fixed point of F̃Q̃, that is F̃Q̃ = Q̃.

Proof. We begin by observing that

HQ̃(z) = H
(
Θ(z) + γPvπ̃

)
=

{
MQ(z), ifMQ(z) > Φr?,

Q(z), otherwise,

=

{
MQ(z), ifMQ(z) > Φr?,

Θ(z) + γPvπ̃, otherwise,

= vπ̃(z).

Hence,

F̃Q̃ = Θ + γPHQ̃ = Θ + γPvπ̃ = Q̃. (44)

which proves the result.

Lemma 8. The following bound holds:

E
[
vπ̂(z0)

]
− E

[
vπ̃(z0)

]
≤ 2

[
(1− γ)

√
(1− γ2)

]−1

‖PQ? −Q?‖ . (45)

Proof. By definitions of vπ̂ and vπ̃ (c.f (43)) and using Jensen’s inequality and the stationarity property we have that,

E
[
vπ̂(z0)

]
− E

[
vπ̃(z0)

]
= E

[
Pvπ̂(z0)

]
− E

[
Pvπ̃(z0)

]
≤
∣∣E [Pvπ̂(z0)

]
− E

[
Pvπ̃(z0)

]∣∣
≤
∥∥Pvπ̂ − Pvπ̃∥∥ . (46)

Now recall that Q̃ := Θ + γPvπ̃ and Q? := Θ + γPvπ
?

, using these expressions in (46) we find that

E
[
vπ̂(z0)

]
− E

[
vπ̃(z0)

]
≤ 1

γ

∥∥∥Q̃−Q?∥∥∥ .



Moreover, by the triangle inequality and using the fact that F(Φr?) = F̃(Φr?) and that FQ? = Q? and FQ̃ = Q̃ (c.f. (45)) we
have that ∥∥∥Q̃−Q?∥∥∥ ≤ ∥∥∥Q̃− F(Φr?)

∥∥∥+
∥∥∥Q? − F̃(Φr?)

∥∥∥
≤ γ

∥∥∥Q̃− Φr?
∥∥∥+ γ ‖Q? − Φr?‖

≤ 2γ
∥∥∥Q̃− Φr?

∥∥∥+ γ
∥∥∥Q? − Q̃∥∥∥ ,

which gives the following bound: ∥∥∥Q̃−Q?∥∥∥ ≤ 2 (1− γ)
−1
∥∥∥Q̃− Φr?

∥∥∥ ,
from which, using Lemma 5, we deduce that

∥∥∥Q̃−Q?∥∥∥ ≤ 2
[
(1− γ)

√
(1− γ2)

]−1 ∥∥∥Q̃− Φr?
∥∥∥, after which by (47), we

finally obtain

E
[
vπ̂(z0)

]
− E

[
vπ̃(z0)

]
≤ 2

[
(1− γ)

√
(1− γ2)

]−1 ∥∥∥Q̃− Φr?
∥∥∥ ,

as required.

Let us rewrite the update in the following way:

rt+1 = rt + γtΞ(wt, rt),

where the function Ξ : R2d × Rp → Rp is given by:

Ξ(w, r) := φ(z) (Θ(z) + γmax {(Φr)(z′),M(Φr)(z′)} − (Φr)(z)) ,

for any w ≡ (z, z′) ∈ (N× S)
2 where z = (t, s) ∈ N× S and z′ = (t, s′) ∈ N× S and for any r ∈ Rp. Let us also define the

function Ξ : Rp → Rp by the following:

Ξ(r) := Ew0∼(P,P) [Ξ(w0, r)] ;w0 := (z0, z1).

Lemma 9. The following statements hold for all z ∈ {0, 1} × S:

i) (r − r?)Ξk(r) < 0, ∀r 6= r?,
ii) Ξk(r?) = 0.

Proof. To prove the statement, we first note that each component of Ξk(r) admits a representation as an inner product, indeed:

Ξk(r) = E [φk(z0)(Θ(z0) + γmax {Φr(z1),MΦ(z1)} − (Φr)(z0)]

= E [φk(z0)(Θ(z0) + γE [max {Φr(z1),MΦ(z1)} |z0]− (Φr)(z0)]

= E [φk(z0)(Θ(z0) + γP max {(Φr,MΦ)} (z0)− (Φr)(z0)]

= 〈φk,FΦr − Φr〉 ,
using the iterated law of expectations and the definitions of P and F.

We now are in position to prove i). Indeed, we now observe the following:

(r − r?) Ξk(r) =
∑
l=1

(r(l)− r?(l)) 〈φl,FΦr − Φr〉

= 〈Φr − Φr?,FΦr − Φr〉
= 〈Φr − Φr?, (1− P)FΦr + PFΦr − Φr〉
= 〈Φr − Φr?,PFΦr − Φr〉 ,

where in the last step we used the orthogonality of (1− P). We now recall that PFΦr? = Φr? since Φr? is a fixed point of PF.
Additionally, using Lemma 5 we observe that ‖PFΦr − Φr?‖ ≤ γ‖Φr − Φr?‖. With this we now find that

〈Φr − Φr?,PFΦr − Φr〉
= 〈Φr − Φr?, (PFΦr − Φr?) + Φr? − Φr〉
≤ ‖Φr − Φr?‖ ‖PFΦr − Φr?‖ − ‖Φr? − Φr‖2

≤ (γ − 1) ‖Φr? − Φr‖2 ,



which is negative since γ < 1 which completes the proof of part i).
The proof of part ii) is straightforward since we readily observe that

Ξk(r?) = 〈φl,FΦr? − Φr〉 = 〈φl,PFΦr? − Φr〉 = 0,

as required and from which we deduce the result.

To prove the theorem, we make use of a special case of the following result:

Theorem 4 (Th. 17, p. 239 in (Benveniste, Métivier, and Priouret 2012)). Consider a stochastic process rt : R×{∞}×Ω→ Rk
which takes an initial value r0 and evolves according to the following:

rt+1 = rt + αΞ(st, rt), (47)

for some function s : R2d × Rk → Rk and where the following statements hold:

1. {st|t = 0, 1, . . .} is a stationary, ergodic Markov process taking values in R2d

2. For any positive scalar q, there exists a scalar µq such that E [1 + ‖st‖q|s ≡ s0] ≤ µq (1 + ‖s‖q)
3. The step size sequence satisfies the Robbins-Monro conditions, that is

∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t <∞

4. There exists scalars c and q such that ‖Ξ(w, r)‖ ≤ c (1 + ‖w‖q) (1 + ‖r‖)
5. There exists scalars c and q such that

∑∞
t=0 ‖E [Ξ(wt, r)|z0 ≡ z]− E [Ξ(w0, r)]‖ ≤ c (1 + ‖w‖q) (1 + ‖r‖)

6. There exists a scalar c > 0 such that ‖E[Ξ(w0, r)]− E[Ξ(w0, r̄)]‖ ≤ c‖r − r̄‖
7. There exists scalars c > 0 and q > 0 such that

∑∞
t=0 ‖E [Ξ(wt, r)|w0 ≡ w]− E [Ξ(w0, r̄)]‖ ≤ c‖r − r̄‖ (1 + ‖w‖q)

8. There exists some r? ∈ Rk such that Ξ(r)(r − r?) < 0 for all r 6= r? and s̄(r?) = 0.

Then rt converges to r? almost surely.

In order to apply the Theorem 4, we show that conditions 1 - 7 are satisfied.

Proof. Conditions 1-2 are true by assumption while condition 3 can be made true by choice of the learning rates. Therefore it
remains to verify conditions 4-7 are met.

To prove 4, we observe that

‖Ξ(w, r)‖ = ‖φ(z) (Θ(z) + γmax {(Φr)(z′),MΦ(z′)} − (Φr)(z))‖
≤ ‖φ(z)‖ ‖Θ(z) + γ (‖φ(z′)‖ ‖r‖+MΦ(z′))‖+ ‖φ(z)‖ ‖r‖
≤ ‖φ(z)‖ (‖Θ(z)‖+ γ‖MΦ(z′)‖) + ‖φ(z)‖ (γ ‖φ(z′)‖+ ‖φ(z)‖) ‖r‖.

Now using the definition of M, we readily observe that ‖MΦ(z′)‖ ≤ ‖Θ‖ + γ‖Pπs′stΦ‖ ≤ ‖Θ‖ + γ‖Φ‖ using the non-
expansiveness of P .

Hence, we lastly deduce that

‖Ξ(w, r)‖ ≤ ‖φ(z)‖ (‖Θ(z)‖+ γ‖MΦ(z′)‖) + ‖φ(z)‖ (γ ‖φ(z′)‖+ ‖φ(z)‖) ‖r‖
≤ ‖φ(z)‖ (‖Θ(z)‖+ γ‖Θ‖+ γ‖ψ‖) + ‖φ(z)‖ (γ ‖φ(z′)‖+ ‖φ(z)‖) ‖r‖,

we then easily deduce the result using the boundedness of φ,Θ and ψ.
Now we observe the following Lipschitz condition on Ξ:

‖Ξ(w, r)− Ξ(w, r̄)‖
= ‖φ(z) (γmax {(Φr)(z′),MΦ(z′)} − γmax {(Φr̄)(z′),MΦ(z′)})− ((Φr)(z)− Φr̄(z))‖
≤ γ ‖φ(z)‖ ‖max {φ′(z′)r,MΦ′(z′)} −max {(φ′(z′)r̄),MΦ′(z′)}‖+ ‖φ(z)‖ ‖φ′(z)r − φ(z)r̄‖
≤ γ ‖φ(z)‖ ‖φ′(z′)r − φ′(z′)r̄‖+ ‖φ(z)‖ ‖φ′(z)r − φ′(z)r̄‖
≤ ‖φ(z)‖ (‖φ(z)‖+ γ ‖φ(z)‖ ‖φ′(z′)− φ′(z′)‖) ‖r − r̄‖
≤ c ‖r − r̄‖ ,

using Cauchy-Schwarz inequality and that for any scalars a, b, c we have that
|max{a, b} −max{b, c}| ≤ |a− c|.

Using Assumptions 3 and 4, we therefore deduce that
∞∑
t=0

‖E [Ξ(w, r)− Ξ(w, r̄)|w0 = w]− E [Ξ(w0, r)− Ξ(w0, r̄)‖] ≤ c ‖r − r̄‖ (1 + ‖w‖l). (48)

Part 2 is assured by Lemma 5 while Part 4 is assured by Lemma 8 and lastly Part 8 is assured by Lemma 9. This result
completes the proof of Theorem 2.



Proof of Proposition 2
Proof of Prop. 2. We split the proof into two parts:

i) We first prove that vπ̃(s) ≥ vπ(s), ∀s ∈ S where we used π̃ to denote the Controller’s policy induced under the influence
of the Shaper.

ii) Second, we prove that there exists a finite integer M such that vπ̃m(s) ≥ vπm(s) for any m ≥M .
The proof of part (i) is achieved by proof by contradiction. Denote by vπ,π

2≡0 the value function for the Controller for
the system without the Shaper and its shaping reward function. Indeed, let (π̂, π̂2) be the policy profile induced by the MPE
policy profile and assume that the shaping reward F leads to a decrease in payoff for the Controller. Then by construction
vπ,π

2

(s) < vπ,π
2≡0(s) which is a contradiction since (π̂, π̂2) is an MPE profile. To arrive at the required result, we invoke Prop.

1, which proves that the inclusion of the Shaper does not affect the total expected return, we can therefore conclude that the
inequality holds for the extrinsic value functions and that the Shaper induces a Controller policy that leads to a (weakly) higher
expected return from the environment. Hence, we have succeeded in showing that vπ̃(s) ≥ vπ(s), ∀s ∈ S.

We now prove part (ii).
By part (i) we have that vπ̃(s) = lim

m→∞
vπ̃m(s) ≥ vπ(s) = lim

m→∞
vπm(s). Since vπ(s) is maximal in the sequence

vπ1(s), vπ2(s), . . . , vπ(s) we can deduce that vπ(s) ≥ vπn(s) for any n ≤ ∞. Hence for any n there exists a c ≥ 0 such that
lim
m→∞

vπ̃m(s) = vπn(s) + c. Now by construction vπ̃m(s)→ vπ̃(s) as m→∞, therefore the sequence ṽπ1 , ṽπ2 , . . . , forms a

Cauchy sequence. Therefore, there exists an M such that for any ε > 0, vπ̃n(s)− (vπn(s) + c) < ε ∀n ≥M . Since ε is arbitrary
we can conclude that vπ̃n(s)− (vπn(s)+ c) = 0 ∀n ≥M . Since c ≥ 0, we immediately deduce that vπ̃n(s) ≥ vπn(s),∀n ≥M
which is the required result.

This result completes the proof of Theorem 1.

Having constructed a procedure to find the optimal Controller policy, our next result characterises Shaper policy g2 and the
optimal times to activate F .

Proposition 5. The policy g2 is given by the following expression: g2(st) = H(Mπ,π2

V π,π
2 − V π,π2

)(st, It), ∀(st, It) ∈
S × {0, 1}, where V is the solution in Theorem 2 and H is the Heaviside function, moreover Shaper’s switching times are
τk = inf{τ > τk−1|Mπ,π2

V π,π
2

= V π,π
2}.

Hence, Prop. 5 also characterises the (categorical) distribution g2. Moreover, given the function V , the times {τk} can be
determined by evaluating ifMV = V holds.

Proof of Proposition 5

Proof of Prop. 5. The proof is given by establishing a contradiction. Therefore suppose that Mπ,π2

ψ(sτk , I(τk)) ≤
ψ(sτk , I(τk)) and suppose that the intervention time τ ′1 > τ1 is an optimal intervention time. Construct the Player 2
π′2 ∈ Π2 and π̃2 policy switching times by (τ ′0, τ

′
1, . . . , ) and π′2 ∈ Π2 policy by (τ ′0, τ1, . . .) respectively. Define by

l = inf{t > 0;Mπ,π2

ψ(st, I0) = ψ(st, I0)} and m = sup{t; t < τ ′1}. By construction we have that

vπ
1,π′2

2 (s, I0)

= E

[
R(s0, a0) + E

[
. . .+ γl−1E

[
R(sτ1−1, aτ1−1) + . . .+ γm−l−1E

[
R(sτ ′1−1, aτ ′1−1)

+γMπ1,π′2vπ
1,π′2

2 (s′, I(τ ′1))

]]]]
< E

[
R(s0, a0) + E

[
. . .+ γl−1E

[
R(sτ1−1, aτ1−1) + γMπ1,π̃2

vπ
1,π′2

2 (sτ1 , I(τ1))
]]]

We now use the following observation

E
[
R(sτ1−1, aτ1−1) + γMπ1,π̃2

vπ
1,π′2

2 (sτ1 , I(τ1))
]

≤ max

{
Mπ1,π̃2

vπ
1,π′2

2 (sτ1 , I(τ1)), max
aτ1∈A

[
R(sτk , aτk) + γ

∑
s′∈S

P (s′; aτ1 , sτ1)vπ
1,π2

2 (s′, I(τ1))

]}
.



Using this we deduce that

vπ
1,π′2

2 (s, I0) ≤ E

[
R(s0, a0) + E

[
. . .

+γl−1E

[
R(sτ1−1, aτ1−1)+γmax

{
Mπ1,π̃2

vπ
1,π′2

2 (sτ1 , I(τ1)),

max
aτ1∈A

[
R(sτk , aτk) + γ

∑
s′∈S

P (s′; aτ1 , sτ1)vπ
1,π2

2 (s′, I(τ1))

]}]]]
= E

[
R(s0, a0) + E

[
. . .+ γl−1E

[
R(sτ1−1, aτ1−1) + γ

[
Tvπ

1,π̃2

2

]
(sτ1 , I(τ1))

]]]
= vπ

1,π̃2

2 (s, I0)),

where the first inequality is true by assumption onM. This is a contradiction since π′2 is an optimal policy for Player 2. Using
analogous reasoning, we deduce the same result for τ ′k < τk after which deduce the result. Moreover, by invoking the same
reasoning, we can conclude that it must be the case that (τ0, τ1, . . . , τk−1, τk, τk+1, . . . , ) are the optimal switching times.
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