
Learning from Multiple Independent Advisors in Multi-agent
Reinforcement Learning

Sriram Ganapathi Subramanian

Vector Institute, Toronto, Canada

University of Waterloo, Waterloo, Canada

sriram.subramanian@vectorinstitute.ai

Matthew E. Taylor

University of Alberta, Edmonton, Canada

Alberta Machine Intelligence Institute, Edmonton, Canada

matthew.e.taylor@ualberta.ca

Kate Larson

University of Waterloo

Waterloo, Canada

kate.larson@uwaterloo.ca

Mark Crowley

University of Waterloo

Waterloo, Canada

mcrowley@uwaterloo.ca

ABSTRACT
Multi-agent reinforcement learning typically suffers from the prob-

lem of sample inefficiency, where learning suitable policies involves

the use of many data samples. Learning from external demonstra-

tors is a possible solution that mitigates this problem. However,

most prior approaches in this area assume the presence of a single

demonstrator. Leveraging multiple knowledge sources (i.e., advi-
sors) with expertise in distinct aspects of the environment could

substantially speed up learning in complex environments. This pa-

per considers the problem of simultaneously learning frommultiple

independent advisors in multi-agent reinforcement learning. The

approach leverages a two-level 𝑄-learning architecture, and ex-

tends this framework from single-agent to multi-agent settings. We

provide principled algorithms that incorporate a set of advisors by

both evaluating the advisors at each state and subsequently using

the advisors to guide action selection. We also provide theoretical

convergence and sample complexity guarantees. Experimentally,

we validate our approach in three different test-beds and show

that our algorithms give better performances than baselines, can

effectively integrate the combined expertise of different advisors,

and learn to ignore bad advice.

KEYWORDS
Multi-agent systems; Multi-agent reinforcement learning; Learning

from action advising; Reinforcement learning; Sample efficiency

ACM Reference Format:
Sriram Ganapathi Subramanian, Matthew E. Taylor, Kate Larson, and Mark

Crowley. 2023. Learning fromMultiple Independent Advisors in Multi-agent

Reinforcement Learning. In Proc. of the 22nd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 27 pages.

1 INTRODUCTION
Reinforcement learning (RL) has been successful in obtaining super-

human performances in a wide range of challenges such as Atari

games [26], Go [35], and simple robotic tasks like opening doors

and learning visuomotor policies [20]. However, it has not been

straightforward to replicate these successes in complex real-world

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

problems. One reason is that these problems often have a multi-

agent structure, where more than one learning agent participates at

the same time, resulting in complicated dynamics. Despite research

advances in multi-agent reinforcement learning (MARL) [11], poor

sample efficiency in existing algorithms is one issue that still causes

significant hurdles in applying MARL to complex problems [33].

Using external sources of knowledge that help in accelerating

MARL training is one solution [2], which has extensive support

in literature [33]. However, most prior work include two limiting

assumptions. First, all demonstrations need to come from a single

demonstrator [4]. In complex MARL environments, since agents

learn policies that meet the twin goals of responding to changing

opponent(s) and environments [22], a learner can likely benefit

from multiple knowledge sources that have expertise in different

parts of the environment or different aspects of the task. Second,

all demonstrations are near-optimal (i.e., from an “expert”) [29]. In

practice, these knowledge sources are typically sub-optimal, and

we broadly refer to them as advisors (to differentiate from experts).

In this paper, we provide an approach that simultaneously lever-

ages multiple different (sub-optimal) advisors for MARL training.

Since the advisors may provide conflicting advice in different states,

an algorithm needs to resolve such conflicts to take advantage of

all the advisors effectively. We propose a two-level learning archi-

tecture and formulate a 𝑄-learning algorithm for simultaneously

incorporating multiple advisors in MARL, improving upon the pre-

vious work of Li et al. [21] in single-agent RL. This architecture

uses one level to evaluate advisors and the other learns values for

actions. Further, we extend our approach to an actor-critic variant

that applies to the centralized training and decentralized execu-

tion (CTDE) setting [24]. Since RL is a fixed point iterative method

[40], we provide convergence results, proving that our 𝑄-learning

algorithm converges to a Nash equilibrium [27] (under common as-

sumptions). Additionally, we provide a detailed finite-time analysis

of our 𝑄-learning algorithm under two different types of learn-

ing rates. Finally, we experimentally study our approach in three

different multi-agent test-beds, in relation to standard baselines.

Since we relax the two limiting assumptions regarding learning

from demonstrators in MARL, our hope is that this approach will

spur successes in real-world applications, such as autonomous driv-

ing [10] and fighting wildfires [15], where MARLmethods could use

existing (sub-optimal) solutions as advisors to accelerate training.

ar
X

iv
:2

30
1.

11
15

3v
2

 [
cs

.L
G

]
 2

 M
ar

 2
02

3

2 RELATEDWORK
This work is most related to the approach of reinforcement learning
from expert demonstrations (RLED) [29]. A well-known RLED tech-

nique is deep 𝑄-learning from demonstrations (DQfD) [12], which
combines a temporal difference (TD) loss, an L2 regularization

loss, and a classification loss that encourages actions to be close

to that of the demonstrator. Another method, normalized actor-
critic (NAC) [16], drops the classification loss and is more robust

under imperfect demonstrations. However, NAC is prone to weaker

performances than DQfD under good demonstrations due to the

absence of classification loss. A different approach, human agent
transfer (HAT) [42], extracts information from limited demonstra-

tions using a classifier, while confidence-based human-agent transfer
(CHAT) [47] improves HAT by using a confidence measurement to

safeguard against sub-optimal demonstrations. A related approach

is the teacher-student framework [44], where a pretrained policy

(teacher) can be used to provide limited advice to a learning agent

(student). Subsequent works expand this framework towards inter-

active learning [1], however, almost all works in this area assume a

moderate level expertise for the teacher. Moreover, these are all in-

dependent methods primarily suited for single-agent environments,

and may not be directly applicable in MARL context.

Furthermore, external knowledge sources have also been used in

MARL [33], where priorworks often assume near optimal experts[30,

49] or are only applicable to restrictive settings, such as fully co-

operative or zero-sum competitive games [28, 34, 35, 46, 52]. Leno

et al. [34] introduced a framework where an agent can learn from

its peers in a shared learning environment, in addition to learning

from the environmental rewards. Here the peers can be sub-optimal,

however this work only applies to cooperative environments. Other

works have provided a cooperative teaching framework for hierar-

chical learning [18, 50]. For multi-agent general-sum environments,

advising multiple intelligent reinforcement agents - decision making
(ADMIRAL-DM) [38] is a 𝑄-learning approach that incorporates

real-time information from a single online sub-optimal advisor.

One limitation of many prior works is the assumption of a single

source of demonstration. In MARL, it may be possible to obtain ad-

visors from different sources of knowledge that provide conflicting

advice. For single-agent settings, Li et al. [21] provides the two-level

𝑄-learning (TLQL) algorithm that incorporates multiple advisors

in RL. The TLQL maintains two 𝑄-networks, where the first 𝑄-

network (high-level) keeps track of each advisor’s performance and

the second 𝑄-network (low-level) learns the quality of each action.

We improve upon TLQL and make it applicable to MARL settings.

3 BACKGROUND
Stochastic Games: A 𝑁 -player stochastic game is represented by

a tuple ⟨𝑆,𝐴1, . . . , 𝐴𝑁 , 𝑟1, . . . , 𝑟𝑁 , 𝑃,𝛾⟩, where 𝑆 is the state space,

𝐴 𝑗 is the action space of the agent 𝑗 ∈ {1, . . . , 𝑁 }, and 𝑟 𝑗 : 𝑆 ×
𝐴1 × · · · × 𝐴𝑁 −→ R is the reward function of 𝑗 . Also, 𝑃 : 𝑆 ×
𝐴1 × · · ·𝐴𝑁 −→ Ω(𝑆) is the transition probability that determines

the next state given the current state and the joint action of all

agents, where Ω is a probability distribution. Finally, 𝛾 ∈ [0, 1) is
the discount factor. At each time 𝑡 , all agents observe the global state

𝑠 and take a local action 𝑎 𝑗 [32]. The joint action 𝒂 = {𝑎1, . . . , 𝑎𝑁 }
determines the immediate reward 𝑟 𝑗 for 𝑗 and the next state of

the system 𝑠 ′. Each agent learns a suitable policy that gives the

best responses to its opponent(s). The policy is denoted by 𝜋 𝑗 :

𝑆 −→ Ω(𝐴 𝑗). Let 𝝅 ≜ (𝜋1, . . . , 𝜋𝑁) be the joint policy of all agents.

At a state 𝑠 , the value function of 𝑗 under the joint policy 𝝅 is

𝑣
𝑗
𝝅 (𝑠) =

∑∞
𝑡=0 𝛾

𝑡 E𝜋,𝑃 [𝑟 𝑗𝑡 |𝑠0 = 𝑠, 𝝅]. This represents the expected
discounted future reward of 𝑗 , when all agents follow the policy 𝝅
from the state 𝑠 . Related to the value function, is the action-value

function or the 𝑄-function. The 𝑄-function of agent 𝑗 , under the

policy 𝝅 , is given by, 𝑄
𝑗
𝝅 (𝑠, 𝒂) = 𝑟 𝑗 (𝑠, 𝒂) + 𝛾 E𝑠′∼𝑃 [𝑣

𝑗
𝝅 (𝑠 ′)].

The setting we consider is general-sum stochastic games, where

the reward functions of the different agents can be related in any

arbitrary fashion. In this setting, the Nash equilibrium is typically

considered as the solution concept [13], where the joint policy

𝝅∗ = [𝜋1∗ , . . . , 𝜋𝑁∗] for all 𝑠 ∈ 𝑆 and all 𝑗 satisfies 𝑣 𝑗 (𝑠;𝜋 𝑗∗ , 𝝅
−𝑗
∗) ≥

𝑣 𝑗 (𝑠 ;𝜋 𝑗 , 𝝅−𝑗∗). Here,𝝅
−𝑗
∗ ≜ [𝜋1∗ , . . . , 𝜋

𝑗−1
∗ , 𝜋

𝑗+1
∗ , . . . , 𝜋𝑁∗] represents

the joint policy of all agents except 𝑗 . In a Nash equilibrium, each

agent plays the best response to the other agents and any deviation

from this response is guaranteed to be worse off. Further, Hu and

Wellman [13] proved that the 𝑄-updates of an agent 𝑗 , using the

Nash payoff at each stage eventually converges to its Nash 𝑄 value

(𝑄
𝑗
∗), which is the action-value obtained by the agent 𝑗 when all

agents follow the joint Nash equilibrium policy for infinite periods.

Two-level𝑄-learning: The TLQL algorithm [21] enables single-

agent learning under the simultaneous presence of multiple advi-

sors providing conflicting demonstrations. Here, the challenge is to

determine which advisor to trust in a given state. In this regard, the

TLQL contains two 𝑄-tables, a high-level 𝑄-table (abbreviated as

high-𝑄) and a low-level𝑄-table (abbreviated as low-𝑄). The high-𝑄

stores the value of the ⟨𝑠, 𝑎𝑑⟩ pair, where 𝑎𝑑 ∈ 𝐴𝐷 represents an

advisor (with 𝐴𝐷 representing the set of all advisors). The high-𝑄

also stores the value of following the RL policy in addition to each

advisor. The low-𝑄 maintains the value of each state-action pair.

At each time step, the agent observes the state and selects an ad-

visor (or the RL policy) from the high-𝑄 using the 𝜖-greedy strategy.

If the high-𝑄 returns an advisor, then the advisor’s recommended

action is performed. If the RL policy is returned, then an action is

executed from the low-𝑄 based on the 𝜖-greedy strategy [39]. The

low-𝑄 is updated using the vanilla 𝑄-learning Bellman update [48].

Subsequently, the high-𝑄 is updated using a synchronization step.

In this step, when an advisor’s action is performed, the value of the

advisor in the high-𝑄 is simply assigned the value of that action

from the low-𝑄 . Finally, the high-𝑄 of the RL policy is updated using

the relation ℎ𝑖𝑔ℎ𝑄 (𝑠, 𝑅𝐿) = max𝑎 𝑙𝑜𝑤𝑄 (𝑠, 𝑎). This synchronization
update of high-𝑄 preserves the convergence guarantees, due to the

policy improvement guarantee in single-agent 𝑄-learning [39].

There are two important limitations of TLQL. First, the high-𝑄

that represents the value of the advisors also depends on the RL

policy through the synchronization step. This 𝑄 value represents

the value of taking the action suggested by the advisor at the current

state and then following the RL policy from the next state onward.

This definition is problematic since at the beginning of training,

the RL policy is sub-optimal, and the objective is to accelerate

learning by relying on external advisors and avoid using the RL

policy at all. As advisors are evaluated at each state using the RL

policy, it is likely that the most effective advisor among the set

of advisors is not being followed until the RL policy improves.

At this stage, it might be possible to simply follow the RL policy

itself, defeating the purpose of learning from advisors. Second,

the advisors have not been evaluated at the beginning of learning.

Hence, it is impossible to find the most suitable advisor to follow,

from the available advisors. While TLQL simply follows an 𝜖-greedy

exploration strategy, this approach could take many data samples

to figure out the right advisor. We address both these limitations.

4 TWO-LEVEL ARCHITECTURE IN MARL
We consider a general-sum stochastic game, where there are a set

of agents that are learning a policy with an objective of providing a

best response to the other agents as well as the environment. Each

agent 𝑗 can access a finite set of (possibly sub-optimal) independent

advisors𝐴𝐷 𝑗 . We use 𝑎𝑑 𝑗 to represent an advisor of 𝑗 , where 𝑎𝑑 𝑗 ∈
{𝑎𝑑 𝑗

1
, . . . , 𝑎𝑑

𝑗

|𝐴𝐷 𝑗 |}. Each advisor 𝑎𝑑 𝑗 can be queried by 𝑗 to obtain

an action recommendation at each state of the stochastic game.

These online advisors provide real-time action advice to the agent,

which helps in learning to dynamically adapt to opponents. We

consider a centralized training setting and assume 1) the advisors

are fixed and do not learn, 2) the communication between agents

and their advisors is free, 3) there is no communication directly

between learning agents, 4) the environment is fully observable (i.e.,

an agent can observe the global state, all actions, and all rewards),

and 5) the state and action spaces are discrete. Though we require

these assumptions for theoretical guarantees, we will show that it

is possible to relax a number of these assumptions in practice.

To make TLQL applicable to multi-agent settings, we parame-

terize both the 𝑄-functions with the joint actions, as is common

in practice [22]. Also, we do not maintain the RL policy in the

high-𝑄 table and do not perform a synchronization step. These

steps are no longer needed to preserve the convergence results in

multi-agent settings, since we do not have a policy improvement

guarantee (unlike in single-agent settings) [41]. Instead, we choose

to use the probabilistic policy reuse (PPR) technique [6], where a

hyperparameter (𝜖 ′ ∈ [0, 1]) decides the probability of following

any advisor(s) (i.e., using the high-𝑄) or the agents’ own policy

(i.e., using the low-𝑄) for action selection, at each time step during

training. This hyperparameter starts with a high value (maximum

dependence on the available advisor(s)) at the beginning of training

and is decayed (linearly) over time. After some finite time step

during training, the value of this hyperparameter goes to 0 (no

further dependence on any advisor(s)) and the agent only uses its

low-𝑄 (own policy) for action selection. This helps in two ways: 1)

in the time limit (𝑡 −→ ∞), a learning agent has the possibility of

recovering from poor advising (by learning from the environment),

and 2) eventually the trained agent can be independently deployed

(with no requirement of having access to any advisor(s)).

The general structure of our proposed Multi-Agent Two-Level
𝑄-Learning (MA-TLQL) algorithm is given in Figure 1. Since we

are in a fully observable setting, like [13], we specify that each

agent maintains copies of the 𝑄-tables of other agents from which

it can obtain the joint actions of other agents for the current state.

If such copies cannot be maintained, agents could use the pre-

viously observed actions of other agents for the joint action as

done in prior works [38, 51]. We use the two-level architecture,

where each agent will maintain a high-𝑄 as well as a low-𝑄 . The

Figure 1: Structure of MA-TLQL, for a representative agent
having access to a set of AD advisor(s)

high-𝑄 provides a value for the ⟨𝑠, 𝒂−𝑗 , 𝑎𝑑 𝑗 ⟩ tuples, where 𝒂−𝑗 =
{𝑎1, . . . , 𝑎 𝑗−1, 𝑎 𝑗+1, . . . , 𝑎𝑁 } is the joint action of all agents except

the agent 𝑗 . This high-𝑄 is a value estimate for the advisor 𝑎𝑑 𝑗 as

estimated by the agent 𝑗 at the state 𝑠 and joint action 𝒂−𝑗 . The
high-𝑄 estimates are updated with an evaluation update given by

ℎ𝑖𝑔ℎ𝑄
𝑗

𝑡+1 (𝑠, 𝒂
−𝑗 , 𝑎𝑑 𝑗) = ℎ𝑖𝑔ℎ𝑄 𝑗𝑡 (𝑠, 𝒂−𝑗 , 𝑎𝑑 𝑗)

+𝛼
(
(𝑟 𝑗𝑡 + 𝛾ℎ𝑖𝑔ℎ𝑄

𝑗
𝑡 (𝑠 ′, 𝒂′

−𝑗 , 𝑎𝑑 𝑗) − ℎ𝑖𝑔ℎ𝑄 𝑗𝑡 (𝑠, 𝒂−𝑗 , 𝑎𝑑 𝑗)
)
,

(1)

where 𝑠 and 𝑠 ′ are the states at 𝑡 and 𝑡 + 1, and 𝛼 is the learning

rate. Also, 𝒂−𝑗 and 𝒂′−𝑗 are joint actions at 𝑠 and 𝑠 ′, respectively.
As described previously, a hyperparameter is used to decide

between choosing to follow an advisor or the RL policy. If the

agent follows an advisor, the high-𝑄 is used to select an advi-

sor using an ensemble selection technique. Let us denote, Q 𝑗 =

{ℎ𝑖𝑔ℎ𝑄 𝑗 (𝑠, 𝒂−𝑗 , 𝑎𝑑 𝑗
1
), . . . , ℎ𝑖𝑔ℎ𝑄 𝑗 (𝑠, 𝒂−𝑗 , 𝑎𝑑 𝑗𝑚)}, to represent the high-

𝑄 estimates of a set of 𝑀 advisors (with |𝑀 | = 𝑚) advising the

same action 𝑎 𝑗 to an agent 𝑗 . Here, 𝑎𝑑
𝑗
𝑖
represents an advisor

𝑖 ∈ {1, . . . ,𝑚} of 𝑗 . Then the value of vote for action 𝑎 𝑗 , at the

state 𝑠 and the joint action 𝒂−𝑗 , denoted byV 𝑗 (𝑠, 𝒂−𝑗 , 𝑎 𝑗), is calcu-
lated as

V 𝑗 (𝑠, 𝒂−𝑗 , 𝑎 𝑗) = maxQ 𝑗
+∑𝑚

𝑖=1,𝑖≠argmax𝑖 ℎ𝑖𝑔ℎ𝑄
𝑗 (𝑠,𝒂−𝑗 ,𝑎𝑑 𝑗

𝑖
)

1

` (𝑠)ℎ𝑖𝑔ℎ𝑄
𝑗 (𝑠, 𝒂−𝑗 , 𝑎𝑑 𝑗

𝑖
). (2)

Here, ` (𝑠) is the number of times the agent has visited the state 𝑠 .

In Eq. 2, if an action is recommended by more than one advisor, the

value of its vote is a weighted sum of all high-𝑄 estimates of advisors

recommending that action. Each high-𝑄 estimate (except the best

high-𝑄 estimate) is weighted by the reciprocal of the number of

times the respective state is visited. In this way, when a state is

visited many times, the advisor with the best high-𝑄 estimate is

likely to be followed (wisdom of individual). When a state is visited

only a few times, then the action suggested by amajority of advisors

is likely to be selected (wisdom of crowd). From Eq. 2, if an action 𝑎 𝑗

is recommended by only one advisor, then the value of vote for 𝑎 𝑗

will be equal to the high-𝑄 estimate of that advisor. After the value

of votes for all actions are calculated, the action with the maximum

value of vote is executed, and the high-𝑄 estimate of the advisor

recommending this action is updated by the agent 𝑗 using Eq. 1.

If the agent decides to use its RL policy, it uses its low-𝑄 , which

contains a value for the ⟨𝑠, 𝒂−𝑗 , 𝑎 𝑗 ⟩ tuples (value for each action). At
each step, the low-𝑄 is updated using a control update as follows:

𝑙𝑜𝑤𝑄
𝑗

𝑡+1 (𝑠, 𝒂
−𝑗 , 𝑎 𝑗) = 𝑙𝑜𝑤𝑄 𝑗𝑡 (𝑠, 𝒂−𝑗 , 𝑎 𝑗)

+𝛼
(
𝑟
𝑗
𝑡 + 𝛾 max𝑎′𝑗 𝑙𝑜𝑤𝑄

𝑗
𝑡 (𝑠 ′, 𝒂′−𝑗 , 𝑎′𝑗) − 𝑙𝑜𝑤𝑄

𝑗
𝑡 (𝑠, 𝒂−𝑗 , 𝑎 𝑗)

)
.

(3)

Now we describe how MA-TLQL addresses the two limitations

of TLQL. The first was the dependence of high-𝑄 on the RL policy

in TLQL. Note, the high-𝑄 in MA-TLQL maintains the 𝑄 values

of the advisor themselves, i.e., the value of following the advisor’s

policy from the current state onward (see Eq. 1). Thus, the coupling

between the advisor values and the RL policy is removed (no syn-

chronization). The second was the difficulty in picking the right

advisor in TLQL. MA-TLQL uses an ensemble technique to choose

the advisor during the early stages of learning. In later stages, it

switches to following the best advisor according to the high-𝑄 esti-

mates, which addresses this limitation of TLQL. In Appendix J, we

present a toy example that illustrates the limitations of TLQL.

We provide the complete pseudocode for a tabular implemen-

tation of the MA-TLQL algorithm in Appendix A (Algorithm 1).

Further, we extend this approach to large state-action environments

using a neural network based implementation (Algorithm 2), which

uses a target network and a replay buffer, as in the Deep𝑄-learning

(DQN) algorithm [26]. We also provide an actor-critic implementa-

tion (Algorithm 3) which is suitable for CTDE [24]. We will refer

to this algorithm as multi-agent two-level actor-critic (MA-TLAC).

In MA-TLAC, each agent has two actors and two critics (high-level

and low-level), where the respective 𝑄-functions serve as the critic

and the corresponding policies serve as the actors. In this CTDE

method, agents can obtain global information (including actions

and rewards of other agents) during training, however, the agents

only require access to its local observation during execution. This

makes our method applicable to partially observable environments

as in Lowe et al. [24]. MA-TLAC applies to continuous state space

environments as well (refer to Appendix A for more details).

5 THEORETICAL RESULTS
We present a convergence guarantee for tabular MA-TLQL and

characterize the convergence rate. For these results, we build on

some prior works that provide several fundamental results on the

nature of stochastic iterative functions [3, 5]. We apply these to MA-

TLQL in general-sum stochastic games using three assumptions

from Hu and Wellman [13], where the first two are standard [40].

Assumption 1. Every 𝑠 ∈ S and 𝑎 𝑗 ∈ 𝐴 𝑗 , for every agent 𝑗 are
visited infinitely often, and the reward function (∀𝑗) stays bounded.

Assumption 2. For all 𝑠, 𝑡 , and 𝒂, 0 ≤ 𝛼𝑡 (𝑠, 𝒂) < 1,
∑∞
𝑡=0 𝛼𝑡 (𝑠, 𝒂) =

∞, ∑∞𝑡=0 [𝛼𝑡 (𝑠, 𝒂)]2 < ∞.
Assumption 3. The Nash equilibrium is a global optimum or

saddle point in every stage game of the stochastic game.

The third assumption is a restriction on the nature of the stochas-

tic game. Several prior works note that this assumption is restrictive

but needed to theoretically prove the convergence of 𝑄-learning

methods in general-sum stochastic games with two or more agents.

In practice, however, it is still possible to observe convergence of

𝑄-learning methods when this assumption is violated [13, 38, 51].

Nowwe prove our theoretical results. All theorem statements are

provided here, while the proofs can be found in Appendices B – D.

First, we provide the convergence guarantee for the low-𝑄 . Recall,

the PPR technique guarantees that the MA-TLQL dependence on

high-𝑄 is only until a finite time step during training. After this

step, the agent only uses its low-𝑄 for action selection. As the

convergence result in Theorem 1 is provided in the time limit (𝑡 −→
∞), the influence of high-𝑄 can be neglected for this result.

Theorem 1. Given Assumptions 1, 2, 3, the low-𝑄 values of an
agent 𝑗 converges to its Nash 𝑄 value in the limit (𝑡 −→ ∞).

Next, we provide sample complexity bounds for the MA-TLQL

algorithm. Instead of explicitly considering the high-𝑄 values, we

specify that the underlying joint policy has a covering time of 𝐿.

The covering time specifies an upper bound on the number of time

steps needed for all state-joint action pairs to be visited at least once

starting from any state-joint action pair. Further, since the action

selection is only based on the low-𝑄 values in the limit (𝑡 −→ ∞),
we are most interested in the sample complexity of low-𝑄 , where

the dependence on the high-𝑄 is effectively represented by 𝐿.

Regarding sample complexity, as is done in [5], we distinguish be-

tween two kinds of learning rates. Consider the following equation

for the low-𝑄 (rewriting Eq. 3 and dropping 𝑙𝑜𝑤 for simplicity),

𝑄
𝑗

𝑡+1 (𝑠𝑡 , 𝒂𝑡) =
(
1 − 𝛼𝜔𝑡 (𝑠𝑡 , 𝒂𝑡)) (𝑄

𝑗
𝑡 (𝑠𝑡 , 𝒂𝑡)

)
+𝛼𝜔𝑡 (𝑠𝑡 , 𝒂𝑡)

(
𝑟
𝑗
𝑡 + 𝛾 max𝑎 𝑗 𝑄

𝑗
𝑡 (𝑠𝑡+1, 𝒂𝑡+1)

)
.

(4)

The value of 𝛼𝜔𝑡 (𝑠, 𝒂) =
1

[#(𝑠,𝒂,𝑡)𝜔] , where #(𝑠, 𝒂, 𝑡) is the number

of times until 𝑡 that the joint action 𝒂 is performed at 𝑠 . Here, we

consider 𝜔 ∈ (1/2, 1]. The learning rate is linear if 𝜔 = 1, and the

learning rate is polynomial if 𝜔 ∈ (1/2, 1).
The next theorem provides a lower bound on the number of time

steps needed for convergence in the case of a polynomial learning

rate. From Assumption 1, let us specify that all rewards for the

agent 𝑗 are bounded by 𝑅
𝑗
max

. We consider a variable 𝑄
𝑗
max

, which

denotes the maximum possible low-𝑄 value for the agent 𝑗 , which is

bounded by𝑄
𝑗
max

= 𝑅
𝑗
max
/(1−𝛾). Additionally, we also use another

variable 𝛽 = (1 − 𝛾)/2 to present our upcoming results concisely.

Theorem 2. Let us specify that with probability at least 1 − 𝛿 , for
an agent 𝑗 , | |𝑄 𝑗

𝑇
−𝑄 𝑗∗ | |∞ ≤ 𝜖 . The bound on the rate of convergence

of low-𝑄 , 𝑄 𝑗
𝑇
, with a polynomial learning rate of factor 𝜔 is given by

(with 𝑄 𝑗∗ as the Nash 𝑄-value of the agent 𝑗)

𝑇 = Ω
((𝐿1+3𝜔𝑄2, 𝑗

max
ln(|𝑆 |Π𝑖 |𝐴𝑖 |𝑄

𝑗
max

𝛿𝛽𝜖
)

𝛽2𝜖2

)
1−𝜔
/𝐿

+
(
(𝐿
𝛽
ln
𝑄

𝑗
max

𝜖 + 1)/2
) 1

1−𝜔
)
.

(5)

Assuming the same action spaces for all agents (i.e. |𝐴1 | = |𝐴2 | =
· · · = |𝐴𝑁 | = |𝐴|), we note that the dependence on the number

of agents is ln |𝐴|𝑁 = 𝑁 ln |𝐴|. Overall this results in a sub-linear

dependence on the number of agents based on the value of 𝜔 ,

which is far superior to recent works that report an exponential

dependence on the number of agents when learning in general-

sum stochastic game environments (with an arbitrary number of

agents) for convergence to a Nash equilibrium [23, 36]. Further,

the dependence on the state space and action space in Theorem 2

is sub-linear (ln |𝑆 |), and the dependence on the covering time is

Ω(𝐿2𝜔−3𝜔2 + 𝐿1/1−𝜔), which is a polynomial dependence.

The next theorem considers the linear learning rate case.

Theorem 3. Let us specify that with probability at least 1 − 𝛿 , for
an agent 𝑗 , | |𝑄 𝑗

𝑇
−𝑄 𝑗∗ | |∞ ≤ 𝜖 . The bound on the rate of convergence

of low-𝑄 , 𝑄 𝑗
𝑇
, with a linear learning rate is given by

𝑇 = Ω
(
(𝐿 +𝜓𝐿 + 1)

1

𝛽
ln

𝑄
𝑗
max

𝜖

𝑄
2, 𝑗
max

ln(|𝑆 |Π𝑖 |𝐴𝑖 |𝑄 𝑗
max

𝛿𝛽𝜖𝜓
)

𝛽2𝜖2𝜓2

)
, (6)

where𝜓 is a small arbitrary positive constant satisfying𝜓 ≤ 0.712.

Theorem 3 shows that the bound is linear in the number of agents

and sub-linear in the state and action spaces. This linear dependence

on the number of agents is also superior to prior results [23, 36].

Note, the dependence on the covering time in Theorem 3 could

be much worse than that of Theorem 2, depending on the value

of 𝑄
𝑗
max

and 𝜖 . Since the value of 𝜖 is small, the dependence is

certainly worse than that obtained for the polynomial learning rate

case. Also, the dependence on 𝑄
𝑗
max

is exponential as opposed to

a polynomial dependence for Theorem 2. The last two theorems

illustrate the performance benefit in using a polynomial learning

rate as opposed to a linear learning rate in our algorithm.

6 EXPERIMENTS AND RESULTS
We consider three different experimental domains, one each for

competitive, cooperative, and mixed settings, where each agent

has access to a set of four advisors. We use neural network im-

plementations of MA-TLQL and MA-TLAC, along with 5 other

baselines: DQN [26], DQfD [12], CHAT [47], ADMIRAL-DM [38],

and TLQL [21]. In Appendix F, we tabulate the characteristics of

these baselines and provide further details regarding our choices.

Since CHAT and ADMIRAL-DM assume the presence of a single

advisor, we use a weighted random policy approach for implement-

ing these two algorithms in the multiple-advisor setting, as in Li et

al. [21]. If different advisors provide different actions at the same

state, each action is weighted based on the number of advisors

suggesting that action. For DQfD, during pre-training [12], we pop-

ulate the replay buffer using advisor demonstrations from all the

available advisors. For all our experiments, we will describe the

critical details here, while the complete description is in Appen-

dix K. All the experiments are repeated 30 times, with averages

and standard deviations reported. For statistical significance we

use the unpaired 2-sided t-test and report 𝑝-values, where 𝑝 < 0.05

is considered significant. The tests compare the highest perform-

ing algorithm (typically MA-TLQL) with the second-best baseline

and best/average advisor performance. We conduct a total of seven

experiments. The code for all experiments is open-sourced [37].

Appendix K tabulates all our experimental settings. Appendix L

provides the hyperparameter details and Appendix M contains the

wall clock times.

Experiments 1–4 use the competitive, two-agent version of Pom-

merman [31]. The environment is complex, with each state con-

taining roughly 200 elements related to agent position and special

features (e.g., bombs). The reward function is sparse: agents only re-

ceive a terminal reward of {−1, 0, +1}. Experiments are conducted

in two phases. In the first phase (training), our algorithms and

the baselines train against a standard DQN opponent for 50,000

episodes, where we plot the cumulative rewards. During this phase,

algorithms can use advisors to accelerate training. In the second

phase (execution), we test the performance of the trained policies

against DQN for 1000 episodes, where we plot the win rate (fraction

of games won) for each algorithm. During this phase, agents cannot

access advisors, take no exploratory actions, and do not learn. All

advisors pertaining to these four experiments are rule-based agents.

(a) Training

(b) Execution

Figure 2: Two agent Pommerman with four sufficient advi-
sors of different quality (Experiment 1)

Experiment 1: Our first experiment uses a set of four advisors

ranked in terms of quality from Advisor 1 to Advisor 4. Here, Ad-

visor 1 is the best advisor, capable of teaching the agent all skills

needed to win the game of Pommerman, and Advisor 4 only sug-

gests random actions. In Pommerman, there is a fixed set of six

skills that an agent needs to master to be able to win [31]. Since

this set of advisors can teach all these skills, we say the agent has

access to a sufficient set of advisors. We plot the training and exe-

cution performances in Figure 2(a) and (b) respectively, including

the performance of the best and average advisors (average of all

Advisors 1–4) against DQN. MA-TLQL gives the best performance

(𝑝 < 0.01) and is the only algorithm providing a better performance

than the best advisor (𝑝 < 0.11) in both training and execution. MA-

TLAC performs better than the average advisor (𝑝 < 0.04). None

of the others show better performances than the average advisor.

CHAT and ADMIRAL-DM are not capable of leveraging and distin-

guishing amongst a set of advisors. DQfD uses pre-training, which is

not very effective in the non-stationary multi-agent context. Learn-

ing from online advising is preferable in MARL. Also, DQfD and

CHAT are independent techniques that are not actively tracking the

opponent’s performance. While TLQL is capable of learning from

multiple advisors, its independent nature in addition to coupling

of advisor values with the RL policy reduces its effectiveness in

multi-agent environments. MA-TLQL gives a better performance

than MA-TLAC in both training and execution (𝑝 < 0.01). As noted

previously, the 𝑄-learning family of algorithms tends to induce a

positive bias while using the maximum action value, which leads to

providing the best possible response [45]. This explains the superior

performance of MA-TLQL. We conclude that MA-TLQL is capable

of leveraging a set of good and bad advisors. Further, the training

results in Figure 2(a) show that MA-TLQL is able to learn a better

policy faster than the baselines by using advisors (𝑝 < 0.01). The

evaluation results in Figure 2(b) show that amongst all algorithms

trained for the same number of episodes, MA-TLQL provides the

best performance, when deployed without any advisors (𝑝 < 0.01).

Both observations point to better sample efficiency in MA-TLQL.

Supplementary experiments in Appendix E show that MA-TLQL

comes to relying more on good advisors than poor advisors, as

compared to the baselines, illustrating its superiority.

(a) Training

(b) Execution

Figure 3: Two-agent Pommerman with four sufficient advi-
sors of similar quality (Experiment 2)

Experiment 2: We use the same domain as in Experiment 1,

but with a different set of advisors. Now, all four advisors can teach

strictly different Pommerman skills. For example, Advisor 1 can

teach how to escape the enemy (and nothing else), and Advisor 2

can teach how to obtain necessary power-ups (and nothing else

— full details are in Appendix K). These advisors provide psuedo-

random action advice in states outside their expertise. This set of

advisors is also a sufficient set. Now, learning agents must decide

what advisor to listen to in the current state. From the training and

execution results in Figure 3(a) and (b), we see that MA-TLQL gives

the best overall performance (𝑝 < 0.02), exceeding the average

performance of the four advisors (𝑝 < 0.05). Since all four advisors

have similar quality, we only choose to use the average performance

of the four advisors in this experiment for comparison. We conclude

that MA-TLQL is capable of leveraging the combined knowledge of

a set of advisors with different individual expertise, during learning.

Experiment 3:We use the same domain as in Experiment 1 but

with a different set of four advisors. These advisors are similar to

the set of advisors in our first experiment, where Advisor 1 gives

the best advice throughout the domain, and Advisor 4 is random.

(a) Training

(b) Execution

Figure 4: Two-agent Pommerman with four insufficient ad-
visors of different quality (Experiment 3)

However, this set of advisors is not capable of teaching all the

strategies (i.e, Pommerman skills) needed to win in Pommerman,

and compose an insufficient set (more details in Appendix K). It is

critical for agents to learn from the environment in addition to the

advisors. Training and execution results in Figure 4 shows the supe-

rior performance of MA-TLQL, the only algorithm that outperforms

the best advisor (𝑝 < 0.05) and all baselines (𝑝 < 0.02). Surprisingly,

TLQL performs better than MA-TLAC (𝑝 < 0.02), likely due to the

positive bias of 𝑄-learning. This experiment reinforces the obser-

vation that MA-TLQL is capable of learning from good advisors

and avoids bad advisors (also see Appendix E). Since MA-TLQL

outperforms the best advisor, this experiment demonstrates that

MA-TLQL can learn from both, advisors and through direct interac-

tions with the environment, hence having a much improved sample

efficiency as compared to other algorithms that learn only from the

environment. This is observed during both training and execution.

Experiment 4: This is similar to the Experiment 2: four advisors

have similar quality, but each understands a different Pommerman

skill. However, our set of advisors in this experiment are insufficient

to teach all the skills in Pommerman, and the agent must also learn

from the environment. The results in Figure 5 shows that MA-TLQL

is capable of leveraging the combined expertise of the advisors and

learning from the environment to obtain the best performance, as

compared to the baselines (𝑝 < 0.04) and advisors (𝑝 < 0.05). This

makes MA-TLQL more sample efficient than the prior algorithms.

Experiment 5: We now switch to a four-agent version of Pom-

merman, which is two vs. two. This is a mixed setting as agents need

to learn cooperative as well as competitive skills. Overall, this is a

more complex domain with a larger state space. We consider four

sufficient advisors of different quality, similar to Experiment 1. We

conduct two phases — training (for 50,000 episodes) and execution

(for 1000 episodes). The training and execution results in Figure 6

(a) Training

(b) Execution

Figure 5: Two-agent Pommerman with four insufficient ad-
visors of similar quality (Experiment 4)

(a) Training

(b) Execution

Figure 6: Team (mixed) Pommerman (Experiment 5)

show that MA-TLQL provides the best performance compared to

the baselines (𝑝 < 0.04) but does not perform better than the best

available advisor. Since this is a more complex domain, MA-TLQL

needs a larger training period for learning good policies. However,

MA-TLQL still performs better than the average performance of the

four advisors (𝑝 < 0.03). We conclude that although MA-TLQL’s

performance suffers in the more difficult mixed setting, it still out-

performs all the other baselines and is capable of distinguishing

between good and bad advisors (see also Appendix E). From both

training and execution results in Figure 6, we note that MA-TLQL

has a superior sample efficiency as compared to the other baselines.

(a) Training (b) Execution

Figure 7: Cooperative Pursuit setting (Experiment 6)

Experiment 6: This experiment switches to the cooperative

Pursuit domain [8]. There are eight pursuer learning agents that

learn to capture a set of 30 randomly moving targets (evaders) (de-

tails in Appendix K). We use four pre-trained DQN networks as the

advisors, learning for 500, 1000, 1500, and 2000 episodes, respec-

tively. We again have two phases — training and execution. During

training, all algorithms are trained for 2000 episodes. The trained

networks are then used in the execution phase for 100 episodes with

no further training or influence from advisors. Figure 7(a) plots the

episodic rewards obtained during training and the Figure 7(b) plots

the number of targets captured in the execution phase, where MA-

TLQL shows the best performance (𝑝 < 0.03). Hence, MA-TLQL

can outperform all baselines in a cooperative environment as well.

(a) Training (b) Execution

Figure 8: Mixed Predator-Prey setting (Experiment 7)

Experiment 7: This final experiment considers a mixed cooper-

ative competitive Predator-Prey environment which is a part of the

Multi Particle Environment (MPE) suite [24]. Our implementation

uses a discrete action space and a continuous state space (more

details in Appendix K). There are a total of eight predators trying

to capture eight prey (prey are not removed, but respawned upon

capture). In our experiment, each algorithm trains the predators

while the prey is trained using a standard DQN opponent. The

experiments have two phases of training and execution, which is

modelled as a CTDE setting. Here each agent obtains information

about the actions and rewards of all other agents during training,

but only has local observation during execution. Since this envi-

ronment requires decentralization during execution, we omit the

fully centralized MA-TLQL and ADMIRAL-DM.We also omit DQfD

(a) Training (b) Execution

Figure 9: Ablation results using Experiment 1

since it gave poor performances previously. As in Experiment 6, we

use four pretrained DQN (predator) networks as advisors (trained

for 1000, 2000, 7000, and 12000 episodes). Training is conducted

for 12000 episodes and execution is conducted for 100 episodes.

The training results in Figure 8(a) (plot of episodic rewards) show

that MA-TLAC is the most sample efficient compared to other al-

gorithms as it is able to leverage the available advisors better than

others, thus outperforming them (𝑝 < 0.04). The execution results

in Figure 8(b) plots the average prey captured by each algorithm.

MA-TLAC outperforms others during execution as well (𝑝 < 0.03).

From all the p-values across the seven experiments, we note

that most of our observations are statistically significant. Despite

observing MA-TLQL outperforming the best advisor in many of

the experiments, some of these comparisons are not statistically

significant (i.e., 𝑝 ≥ 0.05). While the main experiments of the paper

consider fixed advisors, our algorithms can also be implemented

with learning/changing advisors (see Appendix G). In Appendix I

we study performances under different numbers of advisors. Also,

our algorithms can be used along with opponent modelling tech-

niques as done by prior works [9] (more details in Appendix H).

7 ABLATION STUDY
In this section, we run an ablation study on the three components

of MA-TLQL that differ from the previously introduced TLQL al-

gorithm by Li et al. [21]. To recall these three components are: i)

joint action (JA) updates, ii) ensemble method (EM), and iii) advisor

evaluation (AE). For this ablation study we will consider the two-

agent version of Pommerman with four sufficient advisors having

different (Experiment 1) and similar quality (Experiment 2).

The ablation results corresponding to Experiment 1 are given

in Figure 9, where we plot the performances of TLQL and MA-

TLQL in addition to TLQL with each of the three components. In

Figure 9(a) and (b), the performance of TLQL with each of the

three components is better than vanilla TLQL. TLQL using the

ensemble method (i.e., TLQL+EM) is able to perform better than

vanilla TLQL, since at the beginning of training the 𝑄-values of

the advisors are not accurate, and the ensemble technique chooses

the advisor action that is agreed upon by most advisors in the

given set (in line with our discussions in Section 4). Recall that

the set of four different advisors had four advisors of decreasing

quality, with the first three advisors capable of teaching some useful

Pommerman skills and the last advisor being just random (see

Appendix K). Using the ensemble prevents the use of the random

(a) Training (b) Execution

Figure 10: Ablation results using Experiment 2

advisor, as the first three advisors are more likely to agree upon an

action, increasing the possibility of the agent choosing that action.

Further, we see that TLQL highly benefits from using the joint

action update (i.e., TLQL+JA) instead of an independent update

seen in vanilla TLQL. The joint action update explicitly considers

the strategies of other agent(s) and helps in providing stronger best

responses as compared to an independent update in the multi-agent

environments. Finally, TLQL using advisor evaluation in the high-

𝑄 table (i.e., TLQL+AE) provides the best benefit compared to the

other components. As discussed in Section 3 and Section 4, the high-

𝑄 definition in vanilla TLQL is limiting since the advisor evaluation

through the high-𝑄 is coupled with the inaccurate RL policy (and

AE addresses this limitation). Further, from Figure 9, we see that

MA-TLQL (integrating all the three components) shows the best

performance as compared to vanilla TLQL and individual TLQL

implementations with each of the three components (𝑝 < 0.05). Thus,

MA-TLQL is able to seamlessly integrate the advantages of each of

the individual components of TLQL, demonstrating its superiority.

We also consider a similar ablation study using Experiment 2 (see

Figure 10). As in Figure 9, we see that TLQL with each of the three

components performs better than vanilla TLQL. Since we have four

advisors of similar quality where each advisor is good at a different

Pommerman skill, their agreement on an action is expected to be

small. Hence, the ensemble technique (i.e., TLQL+EM) provides

only a small improvement over vanilla TLQL. However, the other

two components (i.e., TLQL+JA and TLQL+AE) provides a good

performance benefit over TLQL. Finally, MA-TLQL, that integrates

all the three components, provides the best performance (𝑝 < 0.03).

8 CONCLUSION
This paper provided a principled approach for learning from mul-

tiple independent advisors in MARL. Inspired by Li et al. [21], we

present a two-level architecture for multi-agent environments. We

discuss two limitations in TLQL and address these limitations in our

approach. Also, we provide a fixed point guarantee and sample com-

plexity bounds regarding the learning of MA-TLQL. Additionally,

we provided an actor-critic implementation that can work in the

CTDE paradigm. Further, we performed an extensive experimental

analysis of MA-TLQL and MA-TLAC in cooperative, competitive,

and mixed settings, where we show that these algorithms are capa-

ble of suitably leveraging a set of advisors, and perform better than

baselines. As future work, we would like to consider human advi-

sors and further explore some avenues in the real-world context.

ACKNOWLEDGEMENTS
Resources used in preparing this research were provided by the

province of Ontario and the government of Canada through CIFAR,

NSERC and companies sponsoring the Vector Institute. Part of this

work has taken place in the Intelligent Robot Learning (IRL) Lab at

the University of Alberta, which is supported in part by research

grants from the Alberta Machine Intelligence Institute (Amii); a

Canada CIFAR AI Chair, Amii; Compute Canada; Huawei; Mitacs;

and NSERC.

REFERENCES
[1] Ofra Amir, Ece Kamar, Andrey Kolobov, and Barbara J. Grosz. 2016. Interactive

Teaching Strategies for Agent Training. In IJCAI. IJCAI Press, New York, NY,

USA, 9-15 July 2016, 804–811.

[2] Samuel Barrett, Avi Rosenfeld, Sarit Kraus, and Peter Stone. 2017. Making friends

on the fly: Cooperating with new teammates. Artificial Intelligence 242 (2017),
132–171.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. 1996. Neuro-dynamic programming.
Optimization and neural computation series, Vol. 3. Athena Scientific, Chestnut

Street, USA.

[4] Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E.

Taylor, and Ann Nowé. 2015. Reinforcement Learning from Demonstration

through Shaping. In IJCAI, July 25-31, 2015. AAAI Press, Buenos Aires, Argentina,
3352–3358.

[5] Eyal Even-Dar and Yishay Mansour. 2003. Learning Rates for Q-learning. Journal
of Machine Learning Research 5 (2003), 1–25.

[6] Fernando Fernández and Manuela M. Veloso. 2006. Probabilistic policy reuse in a

reinforcement learning agent. In 5th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006), May 8-12, 2006. ACM, Hakodate,

Japan, 720–727.

[7] Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. 2018.

Reinforcement Learning from Imperfect Demonstrations. In ICLR, April 30 - May
3, 2018, Workshop Track Proceedings. OpenReview.net, Vancouver, BC, Canada.

[8] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative

multi-agent control using deep reinforcement learning. In AAMAS. Springer,
IFAAMAS, Sao Paulo, Brazil, 66–83.

[9] He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. 2016. Opponent

modeling in deep reinforcement learning. In International conference on machine
learning. PMLR, New York City, US, 1804–1813.

[10] Bassam Helou, Aditya Dusi, Anne Collin, Noushin Mehdipour, Zhiliang Chen,

Cristhian Lizarazo, Calin Belta, Tichakorn Wongpiromsarn, Radboud Duintjer

Tebbens, and Oscar Beijbom. 2021. The Reasonable Crowd: Towards evidence-

based and interpretable models of driving behavior. In IROS. IEEE, Prague, Czech
Republic, 6708–6715.

[11] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. 2019. A survey

and critique of multiagent deep reinforcement learning. Autonomous Agents and
Multi-Agent Systems 33, 6 (01 Nov 2019), 750–797. https://doi.org/10.1007/s10458-

019-09421-1

[12] Todd Hester, Matej Vecerík, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,

Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold,

John P. Agapiou, Joel Z. Leibo, and Audrunas Gruslys. 2018. Deep Q-learning

From Demonstrations. In AAAI, February 2-7, 2018. AAAI Press, New Orleans,

Louisiana, USA.

[13] Junling Hu and Michael P Wellman. 2003. Nash Q-learning for general-sum

stochastic games. JMLR 4, Nov (2003), 1039–1069.

[14] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. 1994. On the Con-

vergence of Stochastic Iterative Dynamic Programming Algorithms. Neural
Computation 6, 6 (1994), 1185–1201. https://doi.org/10.1162/neco.1994.6.6.1185

[15] Piyush Jain, Sean CP Coogan, Sriram Ganapathi Subramanian, Mark Crowley,

Steve Taylor, and Mike D Flannigan. 2020. A review of machine learning applica-

tions in wildfire science and management. Environmental Reviews 28, 4 (2020),
478–505.

[16] Mingxuan Jing, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Chao Yang, Bin Fang,

and Huaping Liu. 2020. Reinforcement Learning from Imperfect Demonstrations

under Soft Expert Guidance. In AAAI, February 7-12, 2020. AAAI Press, New York,

NY, USA, 5109–5116.

[17] Beomjoon Kim, Amir-massoud Farahmand, Joelle Pineau, and Doina Precup.

2013. Learning from Limited Demonstrations. In NeurIPS. Morgan Kaufmann

Publishers, Lake Tahoe, Nevada, United States, 2859–2867.

[18] Dong-Ki Kim, Miao Liu, Shayegan Omidshafiei, Sebastian Lopez-Cot, Matthew

Riemer, Golnaz Habibi, Gerald Tesauro, Sami Mourad, Murray Campbell, and

Jonathan P. How. 2020. Learning Hierarchical Teaching Policies for Cooperative

Agents. In AAMAS, May 9-13, 2020. IFAAMAS, Auckland, New Zealand, 620–628.

[19] Vijay R. Konda and John N. Tsitsiklis. 1999. Actor-Critic Algorithms. In NeurIPS.
The MIT Press, Denver, CO, USA.

[20] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. 2016. End-to-end

training of deep visuomotor policies. JMLR 17, 1 (2016), 1334–1373.

[21] Mao Li, Yi Wei, and Daniel Kudenko. 2019. Two-level Q-learning: learning from

conflict demonstrations. The Knowledge Engineering Review 34 (2019).

[22] Michael L. Littman. 1994. Markov Games as a Framework for Multi-Agent

Reinforcement Learning. In ICML, July 10-13, 1994. Morgan Kaufmann, New

Brunswick, NJ, USA, 157–163.

[23] Qinghua Liu, Tiancheng Yu, Yu Bai, and Chi Jin. 2021. A Sharp Analysis of

Model-based Reinforcement Learning with Self-Play. In ICML (Proceedings of
Machine Learning Research, Vol. 139). PMLR, Virtual Event, 7001–7010.

[24] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.

Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In

NeurIPS, December 4-9, 2017. Morgan Kaufmann Publishers, Long Beach, CA,

USA, 6379–6390.

[25] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. 2012. Indepen-

dent reinforcement learners in cooperative markov games: a survey regarding

coordination problems. The Knowledge Engineering Review 27, 1 (2012), 1–31.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529–533.
[27] John Nash. 1951. Non-cooperative games. Annals of mathematics (1951), 286–295.
[28] Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew Riemer,

Christopher Amato, Murray Campbell, and Jonathan P. How. 2019. Learning to

Teach in Cooperative Multiagent Reinforcement Learning. In AAAI, January 27 -
February 1, 2019. AAAI Press, Honolulu, Hawaii, USA, 6128–6136.

[29] Bilal Piot, Matthieu Geist, and Olivier Pietquin. 2014. Boosted Bellman Residual

Minimization Handling Expert Demonstrations. In ECML-PKDD, September 15-19,
2014, Vol. 8725. Springer, Nancy, France, 549–564.

[30] Tummalapalli Sudhamsh Reddy, Vamsikrishna Gopikrishna, Gergely V. Zaruba,

and Manfred Huber. 2012. Inverse reinforcement learning for decentralized

non-cooperative multiagent systems. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics (SMC 2012), October 14-17, 2012.
IEEE, Seoul, Korea (South), 1930–1935.

[31] Cinjon Resnick, Wes Eldridge, David Ha, Denny Britz, Jakob Foerster, Julian

Togelius, Kyunghyun Cho, and Joan Bruna. 2018. Pommerman: A multi-agent

playground. arXiv preprint arXiv:1809.07124 (2018).
[32] Lloyd S Shapley. 1953. Stochastic games. Proceedings of the national academy of

sciences 39, 10 (1953), 1095–1100.
[33] Felipe Leno Da Silva and Anna Helena Reali Costa. 2019. A Survey on Transfer

Learning for Multiagent Reinforcement Learning Systems. JAIR 64 (2019), 645–

703.

[34] Felipe Leno Da Silva, Ruben Glatt, and Anna Helena Reali Costa. 2017. Simultane-

ously Learning and Advising in Multiagent Reinforcement Learning. In AAMAS,
May 8-12, 2017. ACM, Sao Paulo, Brazil, 1100–1108.

[35] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. Nature 529, 7587 (2016), 484.
[36] Ziang Song, Song Mei, and Yu Bai. 2021. When Can We Learn General-Sum

Markov Games with a Large Number of Players Sample-Efficiently? arXiv preprint
arXiv:2110.04184 (2021).

[37] Sriram Ganapathi Subramanian. 2023. Learning from Multiple Independent

Advisors in Multi-agent Reinforcement Learning. https://github.com/Sriram94/

matlql

[38] Sriram Ganapathi Subramanian, Kate Larson, Matthew Taylor, and Mark Crowley.

2022. Multi-Agent Advisor Q-Learning. Journal of Artificial Intelligence Research
74 (2022), 1–74.

[39] Richard S Sutton and AndrewG Barto. 1998. Introduction to reinforcement learning.
Vol. 135. MIT press, Cambridge.

[40] Csaba Szepesvari and Michael L Littman. 1999. A unified analysis of value-

function-based reinforcement-learning algorithms. Neural computation 11, 8

(1999), 2017–2060.

[41] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In ICML. Cambridge University Press, Amherst, MA, USA, 330–337.

[42] Matthew E. Taylor, Halit Bener Suay, and Sonia Chernova. 2011. Integrating

reinforcement learning with human demonstrations of varying ability. InAAMAS,
May 2-6, 2011. IFAAMAS, Taipei, Taiwan, 617–624.

[43] Justin K Terry, Benjamin Black, Mario Jayakumar, Ananth Hari, Luis Santos,

Clemens Dieffendahl, Niall L Williams, Yashas Lokesh, Ryan Sullivan, Caroline

Horsch, and Praveen Ravi. 2020. PettingZoo: Gym for Multi-Agent Reinforcement

Learning. (2020).

[44] Lisa Torrey and Matthew E. Taylor. 2013. Teaching on a budget: agents advising

agents in reinforcement learning. In AAMAS, May 6-10, 2013. IFAAMAS, Saint

Paul, MN, USA, 1053–1060.

https://doi.org/10.1007/s10458-019-09421-1
https://doi.org/10.1007/s10458-019-09421-1
https://doi.org/10.1162/neco.1994.6.6.1185
https://github.com/Sriram94/matlql
https://github.com/Sriram94/matlql

[45] Hado van Hasselt. 2010. Double Q-learning. In NeurIPS. Curran Associates, Inc.,

Vancouver, British Columbia, Canada, 2613–2621.

[46] Yixi Wang, Wenhuan Lu, Jianye Hao, Jianguo Wei, and Ho-fung Leung. 2018.

Efficient Convention Emergence through Decoupled Reinforcement Social Learn-

ing with Teacher-Student Mechanism. In AAMAS, July 10-15, 2018. IFAAMAS /

ACM, Stockholm, Sweden, 795–803.

[47] ZhaodongWang andMatthewE. Taylor. 2017. Improving Reinforcement Learning

with Confidence-Based Demonstrations. In IJCAI, August 19-25, 2017. ICJAI,
Melbourne, Australia, 3027–3033.

[48] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine Learning
8, 3-4 (1992), 279–292.

[49] Kevin Waugh, Brian D. Ziebart, and Drew Bagnell. 2011. Computational Ra-

tionalization: The Inverse Equilibrium Problem. In ICML, June 28 - July 2, 2011.
Omnipress, Bellevue, Washington, USA, 1169–1176.

[50] Tianpei Yang, Weixun Wang, Hongyao Tang, Jianye Hao, Zhaopeng Meng,

Hangyu Mao, Dong Li, Wulong Liu, Yingfeng Chen, Yujing Hu, et al. 2021. An

Efficient Transfer Learning Framework for Multiagent Reinforcement Learning.

NeurIPS, Virtual Event 34 (2021).
[51] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.

2018. Mean Field Multi-Agent Reinforcement Learning. In ICML, Vol. 80. PMLR,

Stockholm Sweden, 5571–5580.

[52] Dayong Ye, Tianqing Zhu, Zishuo Cheng, Wanlei Zhou, and S Yu Philip. 2020.

Differential Advising in Multi-Agent Reinforcement Learning. IEEE Transactions
on Cybernetics (2020).

A ALGORITHM PSEUDOCODES
A complete pseudocode of a tabular implementation of our 𝑄-

learning based algorithm (MA-TLQL) is given in Algorithm 1. All

agents initialize a low-𝑄 table and a high-𝑄 table in line 2. Then

at each state, all agents choose to perform an action in lines 8–20.

This action can come from the advisor or the RL policy as described

in Section 4. Then the action is executed, and the next state and

reward are observed in line 21. Finally, the 𝑄 values for the low-𝑄

as well as the high-𝑄 are updated (line 22 and line 23) according to

equations presented in Section 4. The value of 𝜖 ′ is linearly decayed
from a high-value to a value close to zero during training (line 24).

To make Algorithm 1 applicable to high dimensional state and

action spaces, we provide a function approximation-based imple-

mentation of MA-TLQL in Algorithm 2. Here neural networks are

used as the function approximator, and the algorithm uses a sepa-

rate target network and a replay buffer for training, as introduced

in the well-known DQN algorithm [26]. The agent maintains a

high-𝑄 network and two low-𝑄 networks (evaluation and target

networks) and updates these networks using the temporal differ-

ence (T.D.) errors with the update equations presented in Section 4.

If the full state of the stochastic game is not available, the agent

can simply use its observation instead of the state, as applicable in

most function approximation-based RL methods.

We also extend Algorithm 2 to an actor-critic implementation

described in Algorithm 3. This algorithm is called multi-agent two-

level actor-critic (MA-TLAC). This algorithm uses the policy as the

actor and the𝑄-values as the critic, consistent with prior work [19].

We maintain two actors, and two critics to reflect the two-level

(high and low) nature of our algorithm. The high-level actor deter-

mines an advisor and the high-level critic helps train the high-level

actor, using the T.D. errors. Similarly, the low-level actor deter-

mines the appropriate action, with the low-level critic providing

the T.D. errors for training. In MA-TLAC, since we use a separate

actor network for advisor selection, we do not use the ensemble

technique from Eq. 2. Instead, the high-level actor directly chooses

one amongst the given advisors for the current state. The advantage

of this algorithm is that it can be implemented using the popular

CTDE paradigm [24], since the actors do not require the actions

of other agents for action/advisor selection. In CTDE, global in-

formation (i.e., information from other agents) is available during

training time but not available during execution. This CTDE based

implementation also allows our method to be used in partially ob-

servable domains, since the actors can use the local observations

for action/advisor selection while the critic can use the joint actions

and states during training, as described in Lowe et al. [24]. Also,

since the ensemble technique (Eq. 2) is not used in MA-TLAC, it

is also applicable to continuous state space environments as well

(unlike MA-TLQL, which is only applicable to environments with

discrete state spaces).

All the algorithm pseudocode provided in this section assume

that all agents are using the same algorithmic steps for learning

where it can maintain copies of updates of other agents, as done

in prior work [13]. If this is not possible, the agents would directly

use the observed previous actions of other agents for its updates.

Algorithm 1 MA-TLQL Tabular Method

1: Let 𝐴𝑑 𝑗 denote a set of advisors available to the agent 𝑗 .

2: For all 𝑗 ∈ 1, . . . , 𝑁 , 𝑠 ∈ 𝑆 , and 𝑎 𝑗 ∈ 𝐴 𝑗 : 𝑙𝑜𝑤𝑄 𝑗 (𝑠, 𝑎 𝑗 , 𝒂−𝑗) ←− 0

where 𝒂−𝑗 = [𝑎1, . . . , 𝑎 𝑗−1, 𝑎 𝑗+1, . . . , 𝑎𝑁]
3: For all 𝑠 ∈ 𝑆 , 𝑎𝑑 𝑗 ∈ 𝐴𝑑 𝑗 , and for all 𝑗 ∈ 1, . . . , 𝑁 :

ℎ𝑖𝑔ℎ𝑄 𝑗 (𝑠, 𝒂−𝑗 , 𝑎𝑑 𝑗) ←− 0

4: Initialize a value for hyperparameters 𝜖 and 𝜖 ′ and [
5: while training is not finished do
6: For each agent 𝑗 , get the current state 𝑠

7: For each agent 𝑗 , get the joint actions of other agents 𝒂−𝑗

at state 𝑠 using the respective copies and previous actions of

all agents

8: For each agent 𝑗 , let 𝑢 be a uniform random number be-

tween 0 and 1

9: if 𝑢 < 𝜖 ′ then
10: Let 𝑢 ′ be a uniform random number between 0 and 1

11: if 𝑢 ′ < [then
12: Choose an advisor using the high-𝑄 values of agent

𝑗 for the current state and joint action of other agents from

Eq. 2 and use its action as the current action 𝑎
𝑗
𝑡

13: else
14: Set the advisor 𝑎𝑑 𝑗 as a random advisor from 𝐴𝑑 𝑗

and use its action as the current action 𝑎
𝑗
𝑡 .

15: end if
16: else if 𝑢 > 𝜖 ′ and 𝑢 < 𝜖 then
17: Set the action 𝑎

𝑗
𝑡 as a random action from the action

space 𝐴 𝑗

18: else
19: Choose a greedy action 𝑎

𝑗
𝑡 from the low-𝑄 value using

𝑠 and the joint action of other agents

20: end if
21: Execute the joint action 𝒂, observe joint reward 𝒓 and the

next state 𝑠 ′, where 𝒂 = [𝑎1, . . . , 𝑎𝑁] and 𝒓 = [𝑟1, . . . , 𝑟𝑁]
22: Update value of low-𝑄 for the agent 𝑗 using Eq. 3. Obtain the

next actions for other agents 𝒂′−𝑗 from the respective copies

and previous actions of other agents

23: If an advisor was chosen, update value of high-𝑄 of the

advisor for the agent 𝑗 using Eq. 1

24: At the end of each episode, linearly decay 𝜖 ′

25: end while

Algorithm 2MA-TLQL Neural Network Method

1: Let 𝐴𝑑 𝑗 denote a set of advisors available to the agent 𝑗
2: Initialize 𝑄𝜙 𝑗 , 𝑄

𝜙
𝑗
−
for all 𝑗 ∈ 1, . . . , 𝑁 (to denote low-𝑄). Ini-

tialize 𝑄\ 𝑗 , 𝑄
\
𝑗
−
for all 𝑗 ∈ 1, . . . , 𝑁 (to denote high-𝑄)

3: Initialize a value for hyperparameters 𝜖 and 𝜖 ′ and [
4: while training is not finished do
5: For each agent 𝑗 , get the current state 𝑠

6: For each agent 𝑗 , get the joint actions of other agents 𝒂−𝑗
at state 𝑠 using the respective copies and previous actions of

all agents

7: For each agent 𝑗 , let 𝑢 be a uniform random number be-

tween 0 and 1

8: if 𝑢 < 𝜖 ′ then
9: Let 𝑢 ′ be a uniform random number between 0 and 1

10: if 𝑢 ′ < [then
11: Choose an advisor using the high-𝑄 values of agent

𝑗 from Eq. 2 for the current state and joint action of other agents

using the high-𝑄 , 𝑄\ 𝑗 , and use its action as the current action

𝑎
𝑗
𝑡

12: else
13: Set the advisor 𝑎𝑑 𝑗 as a random advisor from 𝐴𝑑 𝑗

and use its action as the current action 𝑎
𝑗
𝑡 .

14: end if
15: else if 𝑢 > 𝜖 ′ and 𝑢 < 𝜖 then
16: Set the action 𝑎

𝑗
𝑡 as a random action from the action

space 𝐴 𝑗

17: else
18: Choose a greedy action 𝑎

𝑗
𝑡 from the low-𝑄 , 𝑄𝜙 𝑗 , using

𝑠 and the joint action of other agents

19: end if
20: Execute the joint action 𝒂, observe joint reward 𝒓 and the

next state 𝑠 ′, where 𝒂 = [𝑎1, . . . , 𝑎𝑁] and 𝒓 = [𝑟1, . . . , 𝑟𝑁]
21: For each agent 𝑗 , store ⟨𝑠, 𝒂, 𝒓, 𝑠 ′, 𝒂′⟩ in replay buffer D 𝑗

,

where 𝒂 = [𝑎1, . . . , 𝑎𝑁], 𝒂′ = [𝑎′1, . . . , 𝑎′𝑁]. Obtain the next

actions for other agents 𝒂′−𝑗 from the respective copies and

previous actions of other agents

22: If an advisor was used, for each agent 𝑗 , store

⟨𝑠, 𝒂, 𝒓 , 𝑠 ′, 𝒂′, 𝑎𝑑 𝑗 ⟩ in replay buffer D ′𝑗 , where 𝑎𝑑 𝑗 is the ad-

visor

23: Set the next state 𝑠 ′ as the current state 𝑠
24: At the end of each episode, linearly decay 𝜖 ′
25: while j = 1 to N do
26: Sample a minibatch of K experiences ⟨𝑠, 𝒂, 𝒓, 𝑠 ′, 𝒂′⟩ from
D 𝑗

27: Set 𝑦 𝑗 = 𝑟 𝑗 + 𝛾 max𝑎′𝑗 𝑄𝜙 𝑗
−
(𝑠 ′, 𝒂′−𝑗 , 𝑎′𝑗) according to

Eq. 3

28: Update the 𝑄-network 𝜙 𝑗 by minimizing the loss

L(𝜙 𝑗) = 1

𝐾

∑(𝑦 𝑗 −𝑄𝜙 𝑗 (𝑠, 𝒂−𝑗 , 𝑎 𝑗))2

29: Sample a minibatch of K experiences ⟨𝑠, 𝒂, 𝒓, 𝑠 ′, 𝒂′, 𝑎𝑑 𝑗 ⟩
from D ′ 𝑗

30: Set 𝑦 𝑗 = 𝑟 𝑗 + 𝛾𝑄
\
𝑗
−
(𝑠 ′, 𝒂′−𝑗 , 𝑎𝑑 𝑗) according to Eq. 1

31: Update the 𝑄-network \ 𝑗 by minimizing the loss

L(\ 𝑗) = 1

𝐾

∑(𝑦 𝑗 −𝑄\ 𝑗 (𝑠, 𝒂−𝑗 , 𝑎𝑑 𝑗))2
32: end while
33: Update the parameters of the target network for each agent

by copying over the evaluation network every T steps: 𝜙
𝑗
− ←−

𝜙 𝑗 and \
𝑗
− ←− \ 𝑗

34: end while

Algorithm 3 MA-TLAC

1: Let 𝐴𝑑 𝑗 denote a set of advisors available to the agent 𝑗
2: Initialize 𝑄𝜙 𝑗 , 𝜋

𝜙
𝑗
−
, the low-level critic and actor networks for

all 𝑗 ∈ {1, . . . , 𝑛}
3: Initialize 𝑄\ 𝑗 , 𝜋

\
𝑗
−
, the high-level critic and actor networks for

all 𝑗 ∈ {1, . . . , 𝑛}
4: Initialize a value for hyperparameters 𝜖 and 𝜖 ′ and [
5: while training is not finished do
6: For each agent 𝑗 , get the current state 𝑠
7: For each agent 𝑗 , let 𝑢 be a uniform random number be-

tween 0 and 1

8: if 𝑢 < 𝜖 ′ then
9: Let 𝑢 ′ be a uniform random number between 0 and 1

10: if 𝑢 ′ < [then
11: Choose an advisor 𝑎𝑑 𝑗 using the high-level actor

𝜋\ 𝑗 , for the agent 𝑗 , for the current state 𝑠 , and use its action

as the current action 𝑎 𝑗

12: else
13: Set the advisor 𝑎𝑑 𝑗 as a random advisor from 𝐴𝑑 𝑗

and use its action as the current action 𝑎 𝑗

14: end if
15: else if 𝑢 > 𝜖 ′ and 𝑢 < 𝜖 then
16: Set the action 𝑎 𝑗 as a random action from the action

space 𝐴 𝑗

17: else
18: Choose a greedy action 𝑎 𝑗 from the low-level actor, 𝜋𝜙 𝑗 ,

using 𝑠
19: end if
20: Execute the joint action 𝒂, observe joint reward 𝒓 and the

next state 𝑠 ′, where 𝒂 = [𝑎1, . . . , 𝑎𝑁] and 𝒓 = [𝑟1, . . . , 𝑟𝑁]
21: For each agent 𝑗 , obtain the joint actions of other agents

𝒂−𝑗 (current observed actions of other agents) at state 𝑠

22: Set 𝑦 𝑗 = 𝑟 𝑗 + 𝛾 max𝑎′𝑗 𝑄𝜙 𝑗 (𝑠 ′, 𝒂′−𝑗 , 𝑎′𝑗) according to Eq. 3

23: For each 𝑗 , update the low-level critic by minimizing the

loss L(𝜙 𝑗) = (𝑦 𝑗 −𝑄𝜙 𝑗 (𝑠, 𝒂−𝑗 , 𝑎 𝑗))2
24: For each 𝑗 , calculate the advantage estimate using the rela-

tion 𝐴(𝑠, 𝒂−𝑗 , 𝑎 𝑗) = 𝑦 𝑗 −∑𝑎 𝑗 𝜋𝜙 𝑗
−
(𝑎 𝑗 |𝑠)𝑄𝜙 𝑗 (𝑠, 𝒂−𝑗 , 𝑎 𝑗)

25: For each 𝑗 , update the low-level actor using the log loss

J (𝜙 𝑗−) = log𝜋
𝜙
𝑗
−
(𝑎 𝑗 |𝑠)𝐴(𝑠, 𝒂−𝑗 , 𝑎 𝑗)

26: If an agent 𝑗 used an advisor 𝑎𝑑 𝑗 , then update the advisor’s

𝑄-estimate.

27: For each 𝑗 , set 𝑦 𝑗 = 𝑟 𝑗 + 𝛾𝑄\ 𝑗 (𝑠 ′, 𝒂′−𝑗 , 𝑎𝑑 𝑗) according to

Eq. 1

28: Obtain the next actions for other agents 𝒂′−𝑗 from the

respective copies

29: For each 𝑗 , update the high-level critic by minimizing the

loss L(\ 𝑗) = (𝑦 𝑗 −𝑄\ 𝑗 (𝑠, 𝒂−𝑗 , 𝑎𝑑 𝑗))2 where 𝑎𝑑 𝑗 is the advisor
chosen by the agent 𝑗

30: For each 𝑗 , calculate the advantage estimate using the rela-

tion 𝐴(𝑠, 𝒂−𝑗 , 𝑎𝑑 𝑗) = 𝑦 𝑗 −∑𝑎𝑑 𝑗 𝜋
\
𝑗
−
(𝑎𝑑 𝑗 |𝑠)𝑄\ 𝑗 (𝑠, 𝒂−𝑗 , 𝑎𝑑 𝑗)

31: For each 𝑗 , update the high-level actor using the log loss

J (\ 𝑗−) = log𝜋
\
𝑗
−
(𝑎 𝑗 |𝑠)𝐴(𝑠, 𝒂−𝑗 , 𝑎𝑑 𝑗)

32: Set the next state as the current state 𝑠 = 𝑠 ′
33: At the end of each episode, linearly decay 𝜖 ′
34: end while

B PROOF OF THEOREM 1
Theorem 1. Given Assumptions 1, 2, 3, the low-𝑄 values of an

agent 𝑗 converges to its Nash 𝑄 value in the limit (𝑡 −→ ∞).

Proof. Our proof will be along the lines of Theorem 3 in Subra-

manian et al. [38].

Let us consider a lemma from prior work.

Lemma 1. A random iterative process

Δ𝑡+1 (𝑥) = (1 − 𝛼𝑡 (𝑥))Δ𝑡 (𝑥) + 𝛼𝑡 (𝑥)𝐹𝑡 (𝑥) (7)

where 𝑥 ∈ 𝑋 , 𝑡 = 0, 1, . . . ,∞, converges to zero with probability one
(w. p. 1) if the following properties hold:

1. The set of possible states 𝑋 is finite.
2. 0 ≤ 𝛼𝑡 (𝑥) ≤ 1,

∑
𝑡 𝛼𝑡 (𝑥) = ∞,

∑
𝑡 𝛼

2

𝑡 (𝑥) < ∞ w. p. 1, where
the probability is over the learning rates 𝛼𝑡 .

3. | | E{𝐹𝑡 (𝑥) |P𝑡 }| |𝑊 ≤ K | |Δ𝑡 | |𝑊 + 𝑐𝑡 , where K ∈ [0, 1) and
𝑐𝑡 converges to zero w. p. 1.

4. var{𝐹𝑡 (𝑥) |P𝑡 } ≤ 𝐾 (1 + ||Δ𝑡 | |𝑊)2, where 𝐾 is some constant.
Here P𝑡 is an increasing sequence of 𝜎-fields that includes the past
of the process. In particular, we assume that 𝛼𝑡 ,Δ𝑡 , 𝐹𝑡−1 ∈P𝑡 . The
notation | | · | |𝑊 refers to some (fixed) weighted maximum norm and
the notation var refers to the variance.

Proof. Refer to Theorem 1 in Jaakola et al. [14] for proof.

□

Across this section, since we are only focusing on the low-𝑄

values, with a small abuse of notation, we will use 𝑄 to denote

the low-𝑄 values. Now, we define a Nash operator 𝑃𝑡 , using the

following equation,

𝑃𝑡𝑄
𝑘 (𝑠, 𝒂) = E𝑠′∼𝑝 [𝑟𝑘𝑡 (𝑠, 𝒂) + 𝛾𝜋1∗ (𝑠 ′) · · · 𝜋𝑛∗ (𝑠 ′)𝑄𝑘 (𝑠 ′)] (8)

where 𝑠 ′ is the state at time 𝑡 + 1, (𝜋1∗ (𝑠 ′), . . . , 𝜋𝑛∗ (𝑠 ′)) is the Nash
equilibrium solution for the stage game (𝑄1 (𝑠 ′), . . . , 𝑄𝑛 (𝑠 ′)), and
𝑝 is the transition function. 𝑄𝑘 denotes the 𝑄-value of a represen-

tative agent 𝑘 .

Lemma 2. Under Assumption 3, the Nash operator as defined in
Eq. 8 forms a contraction mapping with the fixed point being the Nash
𝑄-value of the game.

Proof. See Theorem 17 of Hu and Wellman [13]. □

Now, since the 𝑃𝑡 operator forms a contractionmapping, | |𝑃𝑡𝑄 𝑗−
𝑃𝑡𝑄

𝑗
∗ | | ≤ 𝛾 | |𝑄 𝑗 − 𝑄

𝑗
∗ | |, is satisfied for some 𝛾 ∈ [0, 1) and all 𝑄 𝑗 .

Here 𝑄
𝑗
∗ is the Nash 𝑄-value of the agent 𝑗 .

The objective is to apply Lemma 1 to show that the low-𝑄 in

MATLQL converge to the Nash 𝑄 values.

The first two conditions of Lemma 1 are satisfied from the As-

sumption 1 and Assumption 2. Now, comparing Eq. 7 and Eq. 3

we get that 𝑥 can be associated with the state joint action pairs

(𝑠, 𝒂) and Δ𝑡 (𝑠𝑡 , 𝑎𝑡) can be associated with𝑄 𝑗𝑡 (𝑠, 𝒂)−𝑄
𝑗
∗ (𝑠, 𝒂). Here,

𝑄
𝑗
∗ (𝑠, 𝒂) is the Nash 𝑄 value of the agent 𝑗 .

Now we get

Δ𝑡+1 (𝑥) = (1 − 𝛼𝑡 (𝑥))Δ𝑡 (𝑥) + 𝛼𝑡 (𝑥)𝐹𝑡 (𝑥), (9)

where

𝐹𝑡 (𝑥) = 𝑟 𝑗𝑡 + 𝛾𝑣𝑁𝑎𝑠ℎ,𝑗 (𝑠𝑡+1) −𝑄
𝑗
∗ (𝑠𝑡 , 𝒂𝒕)

+𝛾 [max𝑎 𝑗 𝑄
𝑗
𝑡 (𝑠𝑡+1, 𝒂𝑡+1) − 𝑣𝑁𝑎𝑠ℎ,𝑗 (𝑠𝑡+1)]

=
Δ
𝑟
𝑗
𝑡 + 𝛾𝑣𝑁𝑎𝑠ℎ,𝑗 (𝑠𝑡+1) −𝑄

𝑗
∗ (𝑠𝑡 , 𝒂𝑡) +𝐶

𝑗
𝑡 (𝑠𝑡 , 𝒂𝑡)

=
Δ
𝐹
𝑄,𝑗
𝑡 (𝑠𝑡 , 𝒂𝑡) +𝐶

𝑗
𝑡 (𝑠𝑡 , 𝒂𝑡)

(10)

The Nash value function 𝑣𝑁𝑎𝑠ℎ,𝑗 (𝑠) of an agent 𝑗 is defined as

the expected cumulative discounted future rewards obtained by the

agent 𝑗 , given that all agents follow the Nash policy 𝝅∗.
Here, we set, 𝐹𝑡 (𝑠𝑡 , 𝒂𝑡) = 𝐹𝑄,𝑗𝑡 (𝑠𝑡 , 𝒂𝑡) = 𝐶

𝑗
𝑡 (𝑠𝑡 , 𝒂𝑡) = 0 if (𝑠, 𝒂) ≠

(𝑠𝑡 , 𝒂𝑡). Let the 𝜎-field generated by all the random variables pro-

vided by (𝑠𝑡 , 𝛼𝑡 , 𝑎1𝑡 , . . . , 𝑎𝑛𝑡 , 𝑟𝑡−1, . . . , 𝑠1, 𝛼1, 𝑎1, 𝑄0), be represented

by P𝑡 . Now, all the 𝑄-values are P𝑡 measurable which makes Δ𝑡
and 𝐹𝑡 ,P𝑡 measurable and this satisfies themeasurability condition

of Lemma 1.

Hu and Wellman [13] proved that the result, 𝑣𝑁𝑎𝑠ℎ,𝑗 (𝑠𝑡+1) ≜
𝑣 𝑗 (𝑠 ′, 𝜋1∗ , . . . , 𝜋𝑛∗) = 𝜋1∗ (𝑠 ′) · · · 𝜋𝑛∗ (𝑠 ′)𝑄

𝑗
∗ (𝑠 ′) holds (see the proof in

Lemma 10 of [13]). Hence, from Lemma 2, we can show that the

E[𝐹𝑄𝑡] forms a contraction mapping. This can be done using the

fact that E(𝑃𝑡𝑄∗) = 𝑄∗ (refer to Lemma 11 in [13]). Here, the norm

is the maximum norm on the joint action.

Now, we have the following for all 𝑡 ,

| | E[𝐹𝑄,𝑗𝑡 (𝑠𝑡 , 𝒂𝑡) |P𝑡] | | ≤ 𝛾 | |𝑄 𝑗𝑡 (𝑠𝑡 , 𝒂𝑡) −𝑄
𝑗
∗ (𝑠𝑡 , 𝒂𝒕) | | = 𝛾 | |Δ𝑡 | |

(11)

Now from Eq. 10,

| | E[𝐹𝑡 (𝑠𝑡 , 𝒂𝑡) |P𝑡] | |

≤ | | E[𝐹𝑄,𝑗𝑡 (𝑠𝑡 , 𝒂𝑡) |P𝑡] | | + | | E[𝐶 𝑗𝑡 (𝑠𝑡 , 𝒂𝑡) |P𝑡] | |

≤ 𝛾 | |Δ𝑡 | | + | | E[𝐶 𝑗𝑡 (𝑠𝑡 , 𝒂𝑡) |P𝑡] | |

(12)

This satisfies the third condition of Lemma 1, provided that 𝑐𝑡 =

| | E[𝐶 𝑗𝑡 (𝑠𝑡 , 𝒂𝑡) |P𝑡] | | converges to 0 with probability 1 (w. p. 1.).

From the definition of 𝐶
𝑗
𝑡 and the Assumption 3, it can be shown

that the value of 𝐶
𝑗
𝑡 converges to 0 in the limit of time (see Theo-

rem 3 in Subramanian et al. [38]).

Thus, it follows from Lemma 1 that the process Δ𝑡 converges
to 0 and hence, low-𝑄 value for an agent 𝑗 , converges to Nash 𝑄

value 𝑄
𝑗
∗ .

□

C PROOF OF THEOREM 2
In this section, we give the proof for Theorem 2. For providing

this bound we use the notion of covering time 𝐿. The covering

time means that within 𝐿 steps from any start state, all state-joint

action pairs are performed at least once by all agents. Similar to

Dar and Mansour [5], we clarify that we do not need to assume that

the state-joint action pairs are being generated by any particular

strategy. Same as in Appendix B, across this section, we will use 𝑄

to denote the low-𝑄 values. For a representative agent 𝑗 , we will

focus on the value of 𝑟
𝑗
𝑡 = | |𝑄 𝑗𝑡 −𝑄

𝑗
∗ | | and the aim is to bound the

time until 𝑟
𝑗
𝑡 ≤ 𝜖 . Here the norm denotes the maximum difference

of the 𝑄 values across all states and joint actions. The proof of this

theorem follows the Theorem 4 in Dar and Mansour [5]. While the

work of Dar and Mansour was restricted to single-agent MDPs, our

result extends the analysis of Dar and Mansour to the general-sum

stochastic game setting.

In line with the Eq. 4, let us consider a stochastic iterative process

of the form,

𝑋
𝑗

𝑡+1 (𝑖) = (1 − 𝛼𝑡 (𝑖))𝑋
𝑗
𝑡 (𝑖) + 𝛼𝑡 (𝑖) ((𝐻𝑡𝑋

𝑗
𝑡) (𝑖) +𝑤

𝑗
𝑡 (𝑖)) . (13)

As mentioned in Section 5, let us specify 𝛽 =
1−𝛾
2

. Also, consider

a constant 𝑄
𝑗
max

where the 𝑄
𝑗
max

denotes the maximum low-𝑄

value possible to be obtained in the stochastic game by the agent

𝑗 . Hence, the relation | |𝑋0 | | ≤ 𝑄 𝑗max
holds. Further, let us consider

a sequence 𝐷
𝑗

𝑘
, with 𝐷

𝑗

1
= 𝑄

𝑗
max

and 𝐷
𝑗

𝑘+1 = (1 − 𝛽)𝐷 𝑗
𝑘
for all

𝑘 ≥ 1. By the nature of this construction, the sequence 𝐷
𝑗

𝑘
is

guaranteed to converge to 0, since at each step the value of 𝐷
𝑗

𝑘
is

being continuously multiplied by a fractional value. Now we can

prove the following result.

Lemma 3. For every 𝑘 , there exists a time 𝜏𝑘 such that, for any
𝑡 ≥ 𝜏𝑘 we have | |𝑋 𝑗𝑡 | | ≤ 𝐷

𝑗

𝑘
.

Proof. See Theorem 8 in Dar and Mansour [5]. □

The Lemma 3 guarantees that at time 𝑡 ≥ 𝜏𝑘 , for any 𝑖 the value
of | |𝑋 𝑗𝑡 (𝑖) | | is in the interval [−𝐷 𝑗

𝑘
, 𝐷

𝑗

𝑘
].

We can state the following lemma, where we bound the number

of iterations until 𝐷
𝑗
𝑖
≤ 𝜖 .

Lemma 4. For𝑚 ≥ 1

𝛽
ln(𝑄 𝑗

max
/𝜖) we have 𝐷 𝑗𝑚 ≤ 𝜖 .

Proof. Since we have that 𝐷
𝑗

1
= 𝑄

𝑗
max

and 𝐷
𝑗
𝑖
= (1 − 𝛽)𝐷 𝑗

𝑖−1,

we will need a𝑚 that satisfies 𝐷
𝑗
𝑚 = 𝑄

𝑗
max
(1 − 𝛽)𝑚 ≤ 𝜖 . By taking

a logarithm on both sides, we get

ln

(
(𝑄 𝑗

max
) (1 − 𝛽)𝑚

)
≤ ln(𝜖)

ln(𝑄 𝑗
max
) +𝑚 ln(1 − 𝛽) ≤ ln(𝜖)

=⇒ ln(𝑄 𝑗
max
) − ln(𝜖) ≤ −𝑚 ln(1 − 𝛽)

=⇒ ln(𝑄 𝑗
max
/𝜖) ≤ 𝑚∑∞

𝑘=0
𝛽𝑘/𝑘

=⇒ 1/𝛽 ln(𝑄 𝑗
max
/𝜖) ≤ 𝑚.

(14)

In the last step we omit the higher powers since 𝛽 is a small fraction.

This proves the result. □

Now, we define a sequence of times 𝜏𝑘 , with reference to the

MA-TLQL low-level𝑄-updates with a polynomial learning rate. Let

us define 𝜏𝑘+1 = 𝜏𝑘 +𝐿𝜏𝜔𝑘 . Here the term𝜔 denotes the decay factor

of the learning rate with 𝛼𝜔𝑡 = 1

(𝑡+1)𝜔 for 𝜔 ∈ (1/2, 1). The term
𝐿𝜏𝜔
𝑘

specifies the number of steps needed to update each state joint

action pair at least 𝜏𝜔
𝑘
times. The time between the 𝜏𝑘 and 𝜏𝑘+1 is

denoted as the 𝑘th iteration. Now we provide a definition for the

number of times a state joint action pair is visited.

Definition 1. Let 𝑛(𝑠, 𝒂, 𝑡1, 𝑡2) be the number of times that the
state joint action pair (𝑠, 𝒂) was performed in the time step interval
[𝑡1, 𝑡2].

Before providing the suitable bounds, we would like to provide

some equations that relate the stochastic iterative technique given

in Eq. 13 with the 𝑄-update in Eq 4.

First we provide a formal definition of a stochastic game, that

will be useful for our further analysis. Consider a stochastic game

that can be defined as follows:

Definition 2. A stochastic game is defined as ⟨S, 𝑁 ,A, 𝑃,R, 𝛾⟩
where S is a finite set of states, 𝑁 is the finite set of agents, |𝑁 | = 𝑛,
and A = 𝐴1 × . . .×𝐴𝑛 is the set of joint actions, where𝐴 𝑗 is the finite
action set of an agent 𝑗 , and 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ A is the joint action
where an agent 𝑗 takes action 𝑎 𝑗 ∈ 𝐴 𝑗 . Furthermore, 𝑃𝑖,𝑘 (𝒂) : 𝑆 ×A×
𝑆 ↦→ [0, 1] is the transition function that provides the probability of
reaching state 𝑘 from state 𝑖 when all agents are performing the joint
action 𝒂 ∈ A in state 𝑖 , 𝑹 (𝑠, 𝒂) = {𝑅1 (𝑠, 𝒂), . . . , 𝑅𝑛 (𝑠, 𝒂)} is the set of
reward functions, where 𝑅 𝑗 (𝑠, 𝒂) : 𝑆 ×A ↦→ R𝑛 is the reward function
of the agent 𝑗 , and 𝛾 is the discount factor satisfying 0 ≤ 𝛾 < 1.

Towards the same, we define an operator 𝐻 that can be repre-

sented as

(𝐻𝑄 𝑗) (𝑖, 𝒂) = ∑ |𝑆 |
𝑘=0

𝑃𝑖𝑘 (𝒂) (𝑅 𝑗 (𝑖, 𝒂) + 𝛾 max𝑏 𝑗 ∈𝐴 𝑗 𝑄 𝑗 (𝑘, 𝒃)) .
(15)

Here the 𝒃 = {𝑏 𝑗 , 𝑏−𝑗 }, where 𝑏−𝑗 denotes the joint action of all

agents except the agent 𝑗 .

Rewriting the 𝑄-function with 𝐻 we get,

𝑄
𝑗

𝑡+1 (𝑖, 𝒂) = (1 − 𝛼𝑡 (𝑖, 𝒂))𝑄
𝑗
𝑡 (𝑖, 𝒂) + 𝛼𝑡 (𝑖, 𝒂) ((𝐻𝑄

𝑗
𝑡) (𝑖, 𝒂) +𝑤

𝑗
𝑡 (𝑖, 𝒂)) .
(16)

Let 𝑖 be the state that is reached by performing joint action 𝒂 at

time 𝑡 in state 𝑖 and 𝑟 𝑗 (𝑖, 𝒂) be the reward observed by the agent 𝑗

at state 𝑖; then

𝑤
𝑗
𝑡 (𝑖, 𝒂) = 𝑟 𝑗 (𝑖, 𝒂) + 𝛾 max𝑏 𝑗 ∈𝐴 𝑗 𝑄

𝑗
𝑡 (𝑖, 𝒃)

−∑ |𝑆 |
𝑘=0

𝑃
𝑗

𝑖𝑘
(𝒂)

(
𝑅 𝑗 (𝑖, 𝒂) + 𝛾 max𝑏 𝑗 ∈𝐴 𝑗 𝑄

𝑗
𝑡 (𝑘, 𝒃)

)
.

(17)

From this construction𝑤
𝑗
𝑡 is bounded by 𝑄

𝑗
max

for all 𝑡 and has

zero expectation. Further we will define two other sequences𝑊
𝑗
𝑡 ;𝜏

and 𝑌
𝑗
𝑡 ;𝜏 where 𝜏 represents some initial time. These are given by

the following equations.

𝑊
𝑗

𝑡+1;𝜏𝑘 (𝑠, 𝒂) = (1 − 𝛼
𝜔
𝑡 (𝑖))𝑊

𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) + 𝛼𝜔𝑡 (𝑖)𝑤

𝑗
𝑡 (𝑠, 𝒂) (18)

where𝑊
𝑗
𝜏𝑘 ;𝜏𝑘
(𝑠, 𝒂) = 0. The value of𝑊

𝑗
𝑡 ;𝜏𝑘

bounds the contribu-

tions of𝑤
𝑗
𝑡 (𝑠, 𝒂), to the value of 𝑄

𝑗
𝑡 , starting from an arbitrary 𝜏𝑘 .

Now we have

𝑌
𝑗

𝑡+1;𝜏𝑘 (𝑠, 𝒂) = (1 − 𝛼
𝜔
𝑡 (𝑖))𝑌

𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) + 𝛼𝜔𝑡 (𝑠, 𝒂)𝛾𝐷

𝑗

𝑘
(19)

where 𝑌
𝑗
𝜏𝑘 ;𝜏𝑘

= 𝐷
𝑗

𝑘
.

Next, we can state a lemma that will bound the𝑄-functions w.r.t

the sequences𝑊
𝑗
𝑡 ;𝜏𝑘

and 𝑌
𝑗
𝑡 ;𝜏𝑘

.

Lemma 5. For every state 𝑠 and joint action 𝒂 and time 𝜏𝑘 , we have

−𝑌 𝑗𝑡 ;𝜏𝑘 (𝑠, 𝒂) +𝑊
𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂)

≤ 𝑄 𝑗∗ (𝑠, 𝒂) −𝑄
𝑗
𝑡 (𝑠, 𝒂)

≤ 𝑌 𝑗𝑡 ;𝜏𝑘 (𝑠, 𝒂) +𝑊
𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂)

(20)

Proof. See Lemma 4.4 in Bertsekas and Tsitsiklis [3]. □

From the Lemma 5 we see that a bound on the difference 𝑟
𝑗
𝑡

depends on the bound for 𝑌
𝑗
𝑡 ;𝜏𝑘

and𝑊
𝑗
𝑡 ;𝜏𝑘

. So we can bound 𝑌
𝑗
𝑡 ;𝜏𝑘

and𝑊
𝑗
𝑡 ;𝜏𝑘

separately and two bounds together will provide a bound

for 𝑟
𝑗
𝑡 .

We first provide a result on the nature of the sequence 𝑌
𝑗
𝜏𝑘 ;𝜏𝑘

.

Lemma 6. The sequence 𝑌 𝑗𝑡 ;𝜏𝑘 is a monotonically decreasing se-
quence.

Proof. From Eq. 19 we can write (subtract 𝛾𝐷
𝑗

𝑘
from both sides),

(𝑌 𝑗
𝑡+1;𝜏𝑘 (𝑠, 𝒂) − 𝛾𝐷

𝑗

𝑘
)

= (1 − 𝛼𝜔𝑡 (𝑖))𝑌
𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) + (1 − 𝛼𝜔𝑡 (𝑠, 𝒂))𝛾𝐷

𝑗

𝑘

= (1 − 𝛼𝜔𝑡 (𝑖)) (𝑌
𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) + 𝛾𝐷 𝑗

𝑘
) .

(21)

Now, the convergence of | |𝑌 𝑗
𝑡+1;𝜏𝑘 (𝑠, 𝒂) − 𝛾𝐷

𝑗

𝑘
| | follows since

lim𝑛−→∞ Π𝑛
𝑡=𝑘
(1 − 𝛼𝜔𝑡 (𝑠, 𝒂)) = 0. This shows that the sequence

(𝑌 𝑗
𝑡+1;𝜏𝑘 (𝑠, 𝒂) − 𝛾𝐷

𝑗

𝑘
) monotonically decreases to 0 and hence the

sequence 𝑌
𝑗
𝑡 ;𝜏𝑘

monotonically decreases to 𝛾𝐷𝑘 . This proves our

result.

□

Next, we provide a bound on the value of 𝑌
𝑗
𝑡 ;𝜏𝑘

.

Lemma 7. Consider the low-𝑄 update given in Eq. 4, with a poly-
nomial learning rate and assume that for any 𝑡 ≥ 𝜏𝑘 we have
𝑌
𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) ≤ 𝐷𝑘 . Then for any 𝑡 ≥ 𝜏𝑘 + 𝐿𝜏𝜔𝑘 = 𝜏𝑘+1 we have

𝑌
𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) ≤ 𝐷 𝑗 (𝛾 + 2

𝑒 𝛽).

Proof. For each state-joint action pair 𝑠, 𝒂 we are assured that

𝑛(𝑠, 𝑎, 𝜏𝑘 , 𝜏𝑘+1) ≥ 𝜏𝜔
𝑘
, since the covering time is 𝐿 and the un-

derlying policy has made 𝐿𝜏𝜔
𝑘

steps (since we have the relation

𝜏𝑘+1 = 𝜏𝑘 + 𝐿𝜏𝜔𝑘).
Let 𝑌

𝑗
𝜏𝑘 ,𝜏𝑘
(𝑠, 𝒂) = 𝛾𝐷 𝑗

𝑘
+ 𝜌 𝑗𝜏𝑘 , where 𝜌𝜏𝑘 = (1 − 𝛾)𝐷 𝑗

𝑘
. Now we

have the following expression,

𝑌
𝑗

𝑡+1,𝜏𝑘 (𝑠, 𝒂) = (1 − 𝛼
𝜔
𝑡)𝑌

𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) + 𝛼𝜔𝑡 𝛾𝐷

𝑗

𝑘
= 𝛾𝐷

𝑗

𝑘
+ (1 − 𝛼𝜔𝑡)𝜌

𝑗
𝑡

(22)

where 𝜌
𝑗

𝑡+1 = 𝜌
𝑗
𝑡 (1 − 𝛼𝜔𝑡). We aim to show that after time 𝜏𝑘+1 =

𝜏𝑘 + 𝜏𝜔𝑘 , for any 𝑡 ≥ 𝜏
𝜔
𝑘

for any 𝑡 ≥ 𝜏𝑘+1 we have 𝜌
𝑗
𝑡 ≤

2

𝑒 𝛽𝐷
𝑗

𝑘
. By

definition, we can rewrite 𝜌
𝑗
𝑡 as,

𝜌
𝑗
𝑡 = (1 − 𝛾)𝐷 𝑗

𝑘
Π𝑡−𝜏𝑘
𝑙=1
(1 − 𝛼𝜔

𝑙+𝜏𝑘
)

= 2𝛽𝐷
𝑗

𝑘
Π𝑡−𝜏𝑘
𝑙=1
(1 − 𝛼𝜔

𝑙+𝜏𝑘
)

= 2𝛽𝐷
𝑗

𝑘
Π𝑡−𝜏𝑘
𝑙=1
(1 − 1

|𝑛 (𝑠,𝒂,𝜏𝑘+1,𝑙) |𝜔)

(23)

the last identity follows from the definition of 𝛼𝜔𝑡 .

Since the 𝜏𝜔
𝑘
’s are monotonically decreasing,

𝜌
𝑗
𝑡 ≤ 2𝛽𝐷

𝑗

𝑘
(1 − 1

𝜏𝜔
𝑘

)𝑡−𝜏𝑘 . (24)

For 𝑡 ≥ 𝜏𝑘 + 𝜏𝜔𝑘 we have,

𝜌
𝑗
𝑡 ≤ 2𝛽𝐷

𝑗

𝑘

(
1 − 1

𝜏𝜔
𝑘

)𝜏𝜔
𝑘 ≤ 2

𝑒
𝛽𝐷

𝑗

𝑘
. (25)

The last step is obtained from the fact that lim𝑥−→∞ (1 − (1/𝑥))𝑥 =

1/𝑒 .
Hence, 𝑌𝑡 ;𝜏𝑘 (𝑠, 𝒂) ≤ (𝛾 + 2

𝑒 𝛽)𝐷𝑘 .
□

From Lemma 7 we have provided a bound for the term 𝑌
𝑗
𝑡 ;𝜏𝑘

for 𝑡 = 𝜏𝑘+1 which will automatically hold for all 𝑡 ≥ 𝜏𝑘+1, since
the term 𝑌

𝑗
𝑡 ;𝜏𝑘

is monotonically decreasing (from Lemma 6) and

deterministic (from Eq. 19 and Lemma 5).

Next we bound the term𝑊
𝑗
𝑡 ;𝜏𝑘

by (1 − 2

𝑒)𝛽𝐷
𝑗

𝑘
. The sum of the

bounds for𝑊
𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) and 𝑌 𝑗𝑡 ;𝜏𝑘 (𝑠, 𝒂), would be (𝛾 + 𝛽)𝐷 𝑗

𝑘
= (1 −

𝛽)𝐷 𝑗
𝑘
= 𝐷

𝑗

𝑘+1, as desired.

Now we state a definition for a sequence [
𝑘,𝑡, 𝑗
𝑖
(𝑠, 𝒂) and𝑊 𝑙, 𝑗

𝑡 ;𝜏𝑘
.

Definition 3. Let

𝑊
𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) = (1 − 𝛼𝜔𝑡 (𝑠, 𝒂))𝑊

𝑗

𝑡−1;𝜏𝑘 (𝑠, 𝒂) + 𝛼
𝜔
𝑡 (𝑠, 𝒂)𝑤

𝑗
𝑡 (𝑠, 𝒂)

=
∑𝑡−𝜏𝑘
𝑖=1

[
𝑘,𝑡, 𝑗
𝑖+𝜏𝑘 (𝑠, 𝒂)𝑤

𝑗
𝑖+𝜏𝑘 (𝑠, 𝒂),

where

[
𝑘,𝑡, 𝑗
𝑖+𝜏𝑘 (𝑠, 𝒂) = 𝛼

𝜔
𝑖+𝜏𝑘 (𝑠, 𝒂)Π

𝑡
𝑙=𝜏𝑘+𝑖+1 (1 − 𝛼

𝜔
𝑙
(𝑠, 𝒂)).

(26)

For bounding the sequence𝑊
𝑗
𝑡 ;𝜏𝑘

we consider the interval 𝑡 ∈
[𝜏𝑘+1, 𝜏𝑘+2]. First we provide a lemma that bounds the coefficients

in this interval and bounds the influence of𝑤
𝑗
𝑡 (𝑠, 𝒂) in this interval.

Lemma 8. Let �̃� 𝑗,𝑡
𝑖+𝜏𝑘 (𝑠, 𝒂) = [

𝑘,𝑡, 𝑗
𝑖+𝜏𝑘 (𝑠, 𝒂)𝑤

𝑗
𝑖+𝜏𝑘 (𝑠, 𝒂), then for any

𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] the random variable �̃� 𝑗
𝑖+𝜏𝑘 (𝑠, 𝒂) has zero mean and

bounded by (𝐿/𝜏𝑘)𝜔𝑄
𝑗
max

.

Proof. Since [
𝑘,𝑡, 𝑗
𝑖+𝜏𝑘 ((𝑠, 𝒂)) = 𝛼

𝜔
𝑖+𝜏𝑘 (𝑠, 𝒂)Π

𝑡
𝑙=𝜏𝑘+𝑖+1 (1 − 𝛼

𝜔
𝑙
(𝑠, 𝒂)),

we can divide [
𝑘,𝑡, 𝑗
𝑖+𝜏𝑘 into two parts, the first 𝛼𝜔

𝑖+𝜏𝑘 and the second

` = Π𝑡
𝑙=𝜏𝑘+𝑖+1 (1 − 𝛼

𝜔
𝑙
). Since, ` is bounded from above by 1, we

have,

[
𝑘,𝑡, 𝑗
𝑖+𝜏𝑘 (𝑠, 𝒂) ≤ 𝛼

𝜔
𝑖+𝜏𝑘 (𝑠, 𝒂)

= 1

|#(𝑠,𝒂,𝑖+𝜏𝑘) |
∗
≤ (𝐿

𝑖+𝜏𝑘)
𝜔 ≤ (𝐿𝜏𝑘)

𝜔 .

(27)

Here, the ∗ is from the fact that in a time interval of 𝜏 , each state-

joint action pair is performed at-least 𝜏/𝐿 times by the definition

of covering time.

Hence, we get the relation that [
𝑘,𝑡, 𝑗
𝑖+𝜏𝑘 (𝑠, 𝒂) ≤ (𝐿/𝜏𝑘)

𝜔
.

Now, consider the expectation of �̃�𝑖+𝜏𝑘 (𝑠, 𝒂). By definition, we

have that, 𝑤
𝑗
𝜏𝑘+𝑖 (𝑠, 𝒂) has zero mean and is bounded by 𝑄

𝑗
max

for

any history and state-joint action pair, hence,

E[�̃�𝑖+𝜏𝑘 (𝑠, 𝒂)]

= E[[𝑘,𝑡, 𝑗
𝑖+𝜏𝑘 (𝑠, 𝒂)𝑤𝑖+𝜏𝑘 (𝑠, 𝒂)]

= [
𝑘,𝑡, 𝑗
𝑖+𝜏𝑘 (𝑠, 𝒂) E[𝑤𝑖+𝜏𝑘 (𝑠, 𝒂)] = 0.

(28)

Next we can prove that it is bounded as well,

|�̃�𝑖+𝜏𝑘 (𝑠, 𝒂) |

= |[𝑘,𝑡, 𝑗
𝑖
(𝑠, 𝒂)𝑤𝑖+𝜏𝑘 (𝑠, 𝒂) |

≤ |[𝑘,𝑡, 𝑗
𝑖
(𝑠, 𝒂)𝑄 𝑗

max
|

≤ (𝐿/𝜏𝑘)𝜔𝑄
𝑗
max

(29)

□

Now, let us define𝑊
𝑙, 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) = ∑𝑙

𝑖=1 �̃�
𝑡
𝑖+𝜏𝑘 (𝑠, 𝒂). The objective

is to prove that this is a martingale difference sequence having

bounded differences.

Lemma 9. For any 𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] and 1 ≤ 𝑙 ≤ 𝑡 we have that
𝑊
𝑙, 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) is a martingale sequence that satisfies,

|𝑊 𝑙, 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) −𝑊 𝑙−1, 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂) | ≤ (𝐿/𝜏𝑘)𝜔𝑄

𝑗
max

(30)

Proof. We first note that the term𝑊 𝑙, 𝑗 (𝑠, 𝒂) is a martingale

sequence, since

E[𝑊 𝑙, 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) −𝑊 𝑙−1, 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂) |𝐹𝜏𝑘+𝑙−1]

= E[�̃� 𝑗,𝑡

𝑙+𝜏𝑘
(𝑠, 𝒂) |𝐹𝜏𝑘+𝑙−1] = 0

(31)

where the variable 𝐹𝜏𝑘+𝑙−1 denotes all previous values of𝑊
𝑙
.

Also, by Lemma 8 we can show that �̃�
𝑗

𝑙+𝜏𝑘
(𝑠, 𝒂) is bounded by

(𝐿/𝜏𝑘)𝜔𝑄
𝑗
max

, thus

|𝑊 𝑙, 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) −𝑊 𝑙−1, 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂) |

= �̃�
𝑗

𝑙+𝜏𝑘
(𝑠, 𝒂) ≤ (𝐿/𝜏𝑘)𝜔𝑄

𝑗
max

(32)

□

The next lemma bounds the term𝑊
𝑗
𝑡 ;𝜏𝑘

.

Lemma 10. Consider the low-𝑄 update given in Eq. 4, with a poly-
nomial learning rate. With probability at least 1 − 𝛿

𝑚 we have that,
for every state-joint action pair |𝑊 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂) | ≤ (1 − 2

𝑒𝛾𝐷𝑘) for any
𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2], i.e.

𝑃𝑟

[
∀𝑠, 𝒂∀𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] : |𝑊𝑡 ;𝜏𝑘 (𝑠, 𝒂) | ≤ (1 − 2

𝑒)𝛽𝐷𝑘
]
≥ 1 − 𝛿

𝑚

(33)

given that

𝜏𝑘 = Θ
(
(𝐿

1+3𝜔𝑄2, 𝑗
max

ln(𝑄 𝑗
max
|𝑆 |Π𝑖 |𝐴 |𝑖𝑚/(𝛿𝛽𝐷𝑘))

𝛽2𝐷2

𝑘

)1/𝜔
)

(34)

Proof. For each state-joint action pair comparing𝑊
𝑙, 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂)

and𝑊
𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) we note that𝑊 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂) =𝑊 𝑡−𝜏𝑘+1, 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂).

Let 𝑙 = 𝑛(𝑠, 𝒂, 𝜏𝑘 , 𝑡), then for any 𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] we have that
𝑙 ≤ 𝜏𝑘+2 − 𝜏𝑘 = 𝜏𝑘+1 + 𝐿𝜏𝜔𝑘+1 − 𝜏𝑘

= 𝜏𝑘 + 𝐿𝜏𝜔𝑘 + 𝐿(𝜏𝑘 + 𝐿𝜏
𝜔
𝑘
) − 𝜏𝑘

= 𝐿𝜏𝜔
𝑘
+ 𝐿𝜏𝑘 + 𝐿2𝜏𝜔𝑘 ≤ Θ(𝐿1+𝜔𝜏𝜔

𝑘
).

(35)

By Lemma 9 we can apply Azuma’s inequality to𝑊
𝑡−𝜏𝑘+1, 𝑗
𝑡 ;𝜏𝑘

(𝑠, 𝒂)
with 𝑐𝑖 = (𝐿/𝜏𝑘)𝜔𝑄

𝑗
max

. Therefore, we can derive that

𝑃𝑟

[
|𝑊𝑡 ;𝜏𝑘 (𝑠, 𝒂) | ≥ 𝜖 |𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2]

]
≤ 2𝑒

−𝜖2
2

∑𝑡
𝑖=𝜏𝑘 +1

𝑐2
𝑖 ≤ 2𝑒

−𝜖2
2𝑙𝑐2

𝑖

≤ 2𝑒
−𝑐

𝜖2𝜏2𝜔
𝑘

𝑙𝐿2𝜔𝑄
2, 𝑗
max

≤ 2𝑒
−𝑐

𝜖2𝜏𝜔
𝑘

𝐿1+3𝜔𝑄
2, 𝑗
max

(36)

for some constant 𝑐 > 0. We can set
˜𝛿𝑘 = 2𝑒

−𝑐𝜏𝜔
𝑘

𝜖2

𝐿1+3𝜔𝑄
2, 𝑗
max , which holds

for 𝜏𝜔
𝑘

= Θ(ln(1/ ˜𝛿𝑘)𝐿1+3𝜔𝑄
2, 𝑗
max
/𝜖2).

Using the union bound we get,

𝑃𝑟 [∀𝑠,∀𝒂,∀𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] :𝑊
𝑗
𝑡,𝜏𝑘
(𝑠, 𝒂) ≤ 𝜖]

≥ 1 −∑𝜏𝑘+2𝑡=𝜏𝑘+1
𝑃𝑟 [∀𝑠,∀𝒂,𝑊 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂) ≥ 𝜖]

≥ 1 −∑𝜏𝑘+2𝑡=𝜏𝑘+1
𝑃𝑟 [∀𝑠,∀𝒂, |𝑊 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂) | ≥ 𝜖]

≥ 1 −∑𝜏𝑘+2𝑡=𝜏𝑘+1
˜𝛿𝑘 |𝑆 |Π𝑖 |𝐴|𝑖

≥ 1 − (𝜏𝑘+2 − 𝜏𝑘+1) ˜𝛿𝑘 |𝑆 |Π𝑖 |𝐴|𝑖

(37)

We would like to set a level of probability of 1 − 𝛿
𝑚 , for each

state-joint action pair. From the above equation we get,

1 − (𝜏𝑘+2 − 𝜏𝑘+1) ˜𝛿𝑘 |𝑆 |Π𝑖 |𝐴|𝑖 = 1 − 𝛿/𝑚

=⇒ (𝜏𝑘+2 − 𝜏𝑘+1) ˜𝛿𝑘 |𝑆 |Π𝑖 |𝐴|𝑖 = 𝛿/𝑚.

=⇒ ˜𝛿𝑘 = 𝛿/(𝜏𝑘+2 − 𝜏𝑘+1)𝑚 |𝑆 |Π𝑖 |𝐴|𝑖 .

(38)

Thus taking
˜𝛿𝑘 = 𝛿

𝑚 (𝜏𝑘+2−𝜏𝑘+1) |𝑆 | |𝐴 | assures 1−
𝛿
𝑚 for each state-

joint action pair. As a result we have,

𝜏𝜔
𝑘

= Θ
(
𝐿1+3𝜔𝑄2, 𝑗

max
ln(|𝑆 |Π𝑖 |𝐴 |𝑖𝑚𝜏𝜔𝑘 /𝛿)

𝜖2

)
= Θ

(
𝐿1+3𝜔𝑄2, 𝑗

max
ln(|𝑆 |Π𝑖 |𝐴 |𝑖𝑚𝑄 𝑗

max
/(𝛿𝜖))

𝜖2

) (39)

Setting 𝜖 = (1 − 2/𝑒)𝛽𝐷𝑘 gives the desired bound.

□

Now that we have bounded for each iteration the time needed

to achieve the desired probability 1 − 𝛿
𝑚 . The next lemma provides

a bound for error in all iterations.

Lemma 11. Consider the low-𝑄 update given in Eq. 4, with a poly-
nomial learning rate. With probability 1 − 𝛿 , for every iteration 𝑘 ∈
[1,𝑚] and time 𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] we have |𝑊

𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) | ≤ (1− 2

𝑒)𝛽𝐷
𝑗

𝑘
,

i.e.,

𝑃𝑟

[
∀𝑘 ∈ [1,𝑚],∀𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2],∀𝑠, 𝒂 : |𝑊 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂) |

≤ (1 − 2

𝑒)𝛽𝐷
𝑗

𝑘

]
≥ 1 − 𝛿

(40)

given that

𝜏0 = Θ
((𝐿1+3𝜔𝑄2, 𝑗

max
ln(𝑄 𝑗

max
|𝑆 |Π𝑖 |𝐴|𝑖𝑚/(𝛿𝛽𝜖))

𝛽2𝜖2

)
1/𝜔

)
(41)

Proof. From Lemma 10 we have that

𝑃𝑟

[
∀𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] : |𝑊

𝑗
𝑡 ;𝜏𝑘
| ≥ (1 − 2

𝑒)𝛽𝐷
𝑗

𝑘

]
≤ 𝛿
𝑚 (42)

Using the union bound we have that

𝑃𝑟 [∀𝑘 ≤ 𝑚,∀𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] |𝑊
𝑗
𝑡 ;𝜏𝑘
| ≥ 𝜖]

≤ ∑𝑚
𝑘=1

𝑃𝑟 [∀𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] |𝑊
𝑗
𝑡 ;𝜏𝑘
| ≥ 𝜖] ≤ 𝛿

(43)

where 𝜖 = (1 − 2

𝑒)𝛽𝐷𝑘 .
□

The next lemma solves the recurrence

∑𝑚−1
𝑖=0 𝐿𝜏𝜔

𝑖
+𝜏0 and derives

the time complexity.

Lemma 12. Let

𝑎𝑘+1 = 𝑎𝑘 + 𝐿𝑎𝜔𝑘 = 𝑎0 +
𝑘∑︁
𝑖=0

𝐿𝑎𝜔𝑖 (44)

Then for any constant 𝜔 ∈ (0, 1), 𝑎𝑘 = Ω(𝑎1−𝜔
0
/𝐿 + 𝐿

1

1−𝜔 ((𝑘 +
1)/2)

1

1−𝜔).

Proof. Let us define the following series

𝑏𝑘+1 =
∑𝑘
𝑖=0 𝐿𝑏

𝜔
𝑖
+ 𝑏0 (45)

with an initial condition 𝑏0 = 𝐿
1

1−𝜔 .

Now we lower bound 𝑏𝑘 by (𝐿(𝑘 + 1)/2)
1

1−𝜔 . We use induction

to prove this hypothesis. For 𝑘 = 0,

𝑏0 = 𝐿
1

1−𝜔 ≥ (𝐿
2

)
1

1−𝜔 (46)

Assume that the induction hypothesis holds for 𝑘 − 1 and prove

for 𝑘 ,

𝑏𝑘 = 𝑏𝑘−1 + 𝐿𝑏𝜔𝑘−1

= (𝐿𝑘/2)
1

1−𝜔 + 𝐿(𝐿𝑘/2)
𝜔

1−𝜔

= 𝐿
1

1−𝜔 ((𝑘/2)
1

1−𝜔 + (𝑘/2)
𝜔

1−𝜔)

≥ 𝐿
1

1−𝜔 ((𝑘 + 1)/2)
1

1−𝜔 .

(47)

For 𝑎0 ≥ 𝐿
1

1−𝜔 we can view the series as starting at𝑏𝑘 = 𝑎0. Since

the first time step is 1, we can see that the start point has moved

Θ(𝑎1−𝜔
0
/𝐿). Therefore, we have a total complexity of Ω(𝑎1−𝜔

0
/𝐿 +

𝐿
1

1−𝜔 ((𝑘 + 1)/2)
1

1−𝜔).
□

Theorem 2. Let us specify that with probability at least 1 − 𝛿 , for
an agent 𝑗 , | |𝑄 𝑗

𝑇
−𝑄 𝑗∗ | |∞ ≤ 𝜖 . The bound on the rate of convergence

of low-𝑄 , 𝑄 𝑗
𝑇
, with a polynomial learning rate of factor 𝜔 is given by

(with 𝑄 𝑗∗ as the Nash 𝑄-value of 𝑗)

𝑇 = Ω
((𝐿1+3𝜔𝑄2, 𝑗

max
ln(|𝑆 |Π𝑖 |𝐴𝑖 |𝑄

𝑗
max

𝛿𝛽𝜖
)

𝛽2𝜖2

)
1−𝜔
/𝐿

+
(
(𝐿
𝛽
ln
𝑄

𝑗
max

𝜖 + 1)/2
) 1

1−𝜔
)
.

Proof. The proof of Theorem 2 follows from Lemmas 7, 11, 4,

and 12.

Specifically, from the relation in Lemma 12 substitute the value

of 𝑎0 from the Lemma 11 (value of 𝜏0), and value of 𝑘 from Lemma 4

(lower bound for𝑚). From the Lemma 7 and Lemma 11, we see that

the condition required in Lemma 5 is satisfied to provide a lower

bound.

□

D PROOF OF THEOREM 3
In this section, we aim to show that the size of the 𝑘th iteration is

𝐿(1+𝜓)𝜏𝑘 for some positive constant𝜓 ≤ 0.712. The covering time

property guarantees that in (1+𝜓)𝐿𝜏𝑘 steps, each pair of state-joint

actions are performed at least (1 + 𝜓)𝜏𝑘 times. The sequence of

times in this case is 𝜏𝑘+1 = 𝜏𝑘 + (1 +𝜓)𝐿𝜏𝑘 . As in the last section,

we will first bound 𝑌
𝑗
𝑡 ;𝜏𝑘

and then bound𝑊
𝑗
𝑡 ;𝜏𝑘

. As in Appendix B,

we will use 𝑄 to denote the low-𝑄 values across this section as

well. The proof of this theorem follows the Theorem 5 in Dar and

Mansour [5]. While the work of Dar and Mansour was restricted

to single-agent MDPs, our result extends the analysis of Dar and

Mansour to the general-sum stochastic game setting.

Lemma 13. Consider the low-𝑄 update given in Eq. 4, with a linear
learning rate. Assume that for 𝑡 ≥ 𝜏𝑘 we have that 𝑌 𝑗𝑡 ;𝜏𝑘 (𝑠, 𝒂) ≤ 𝐷

𝑗

𝑘
.

Then for any 𝑡 ≥ 𝜏𝑘 + (1 +𝜓)𝐿𝜏𝑘 = 𝜏𝑘+1 we have that 𝑌
𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) ≤

(𝛾 + 2

2+𝜓 𝛽)𝐷
𝑗

𝑘
.

Proof. For each state-joint action pair, we are assured that

𝑛(𝑠, 𝒂, 𝜏𝑘 , 𝜏𝑘+1) ≥ (1 + 𝜓)𝜏𝑘 , since in an interval of (1 + 𝜓)𝐿𝜏𝑘
steps, each state-joint action pair is visited at least (1 +𝜓)𝜏𝑘 times

by the definition of covering time.

Let 𝑌
𝑗
𝜏𝑘 ,𝜏𝑘
(𝑠, 𝒂) = 𝛾𝐷 𝑗

𝑘
+ 𝜌 𝑗𝜏𝑘 , where 𝜌

𝑗
𝜏𝑘

= (1 − 𝛾)𝐷 𝑗
𝑘
. We now

have,

𝜌
𝑗
𝑡 = (1 − 𝛾)Π𝑡−𝜏𝑘

𝑙=1
(1 − 𝛼𝑙+𝜏𝑘)

= 2𝛽𝐷
𝑗

𝑘
Π𝑡−𝜏𝑘
𝑙=1
(1 − 𝛼𝑙+𝜏𝑘)

= 2𝛽𝐷
𝑗

𝑘
Π𝑡−𝜏𝑘
𝑙=1
(1 − 1

|𝑛 (𝑠,𝒂,𝜏𝑘+1,𝑙) |),

(48)

where the last identity follows from the fact that 𝛼𝑡 = 1

𝑛 (𝑠,𝒂,0,𝑡) .
Since the 𝜏𝑘 ’s aremonotonically decreasing, using 𝑡 = 𝜏𝑘+(1+𝜓)𝐿𝜏𝑘 ,
we get (using𝜓 < 0.712),

𝜌𝑡 ≤ 2𝐷
𝑗

𝑘
𝛽 (1 − 1

(1+𝜓)𝜏𝑘)
𝑡−𝜏𝑘

≤ 2𝐷
𝑗

𝑘
𝛽 (1 − 1

(1+𝜓)𝜏𝑘)
1+𝜓𝐿𝜏𝑘

≤ 2𝐷
𝑗

𝑘
𝛽 (1 − 1

(1+𝜓)𝜏𝑘)
1+𝜓𝜏𝑘

≤ 2𝐷
𝑗

𝑘
𝛽

𝑒

≤ 2𝐷
𝑗

𝑘
𝛽

2+𝜓

(49)

Hence, 𝑌
𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) ≤ (𝛾 + 2

2+𝜓 𝛽)𝐷
𝑗

𝑘
.

□

The following lemma enables the use of Azuma’s inequality.

Lemma 14. For any 𝑡 ≥ 𝜏𝑘 and 1 ≤ 𝑙 ≤ 𝑡 we have that𝑊 𝑙, 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂)

is a martingale sequence, which satisfies,

|𝑊 𝑙, 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) −𝑊 𝑙−1, 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂) | ≤ 𝑄

𝑗
max

𝑛(𝑠, 𝒂, 0, 𝑡) (50)

Proof. 𝑊
𝑙, 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) is a martingale difference sequence since,

E[𝑊 𝑙, 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) −𝑊 𝑙−1, 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂) |𝐹𝜏𝑘+𝑙−1]

= E[[𝑘,𝑡, 𝑗
𝜏𝑘+𝑙
(𝑠, 𝒂)𝑤 𝑗

𝜏𝑘+𝑙
(𝑠, 𝒂) |𝐹𝜏𝑘+𝑙−1]

= [
𝑘,𝑡, 𝑗

𝜏𝑘+𝑙
(𝑠, 𝒂) E[𝑤 𝑗

𝜏𝑘+𝑙
(𝑠, 𝒂) |𝐹𝜏𝑘+𝑙−1] = 0

(51)

For linear learning rate we have that [
𝑘,𝑡, 𝑗

𝜏𝑘+𝑙
(𝑠, 𝒂) ≤ 𝛼𝑙+𝜏𝑘 =

1/𝑛(𝑠, 𝒂, 0, 𝑡), thus

|𝑊 𝑙, 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) −𝑊 𝑙−1, 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂) |

= [
𝑘,𝑡, 𝑗

𝜏𝑘+𝑙
(𝑠, 𝒂) |𝑤 𝑗

𝜏𝑘+𝑙
(𝑠, 𝒂) |

≤ 𝑄
𝑗
max

𝑛 (𝑠,𝒂,0,𝑡) .

(52)

□

The following lemma provides a bound for the stochastic term

𝑊
𝑗
𝑡 ;𝜏𝑘

.

Lemma 15. Consider the low-𝑄 update given in Eq. 4, with a linear
learning rate. With probability at least 1 − 𝛿

𝑚 we have that for every

state-joint action pair |𝑊 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) | ≤ 𝜓

2+𝜓 𝛽𝐷
𝑗

𝑘
, for any 𝑡 > 𝜏𝑘+1 and

any positive constant𝜓 ≤ 0.712, i.e.,

𝑃𝑟

[
∀𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] :𝑊

𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) ≤ 𝜓

2+𝜓 𝛽𝐷
𝑗

𝑘

]
≥ 1 − 𝛿

𝑚 (53)

given that 𝜏𝑘 ≥ Θ(𝑄
2, 𝑗
max

ln(𝑄 𝑗
max
|𝑆 |Π𝑖 |𝐴 |𝑖𝑚)/(𝜓𝛿𝛽𝐷𝑘)
𝜓 2𝛽2𝐷2

𝑘

).

Proof. By Lemma 14 we can apply Azuma’s inequality on the

term,𝑊
𝑡−𝜏𝑘+1, 𝑗
𝑡 ;𝜏𝑘

(note that𝑊
𝑡−𝜏𝑘+1, 𝑗
𝑡 ;𝜏𝑘

= 𝑊𝑡 ;𝜏𝑘), and with the ex-

pression 𝑐𝑖 = Θ
(

𝑄
𝑗
max

𝑛 (𝑠,𝑎,0,𝑡)

)
for any 𝑡 ≥ 𝜏𝑘+1. Therefore, we derive

that,

𝑃𝑟 [|𝑊 𝑗
𝑡 ;𝜏𝑘
≥ 𝜖 |] ≤ 2𝑒

−2𝑒𝜖2∑𝑡
𝑖=𝜏𝑘

𝑐2
𝑖 ≤ 2𝑒

−𝑐 𝜖2𝑛 (𝑠,𝒂,𝜏𝑘 ,𝑡)
𝑄
2, 𝑗
max

(54)

for some positive constant c.

Let us define,

Z𝑡 (𝑠, 𝒂) = 1, if 𝛼𝑡 (𝑠, 𝒂) ≠ 0

Z𝑡 (𝑠, 𝒂) = 0, otherwise .
(55)

Using the union bound and the property that, in an interval of

length (1 + 𝜓)𝐿𝜏𝑘 , each state-joint action pair is visited at least

(1 +𝜓)𝜏𝑘 times, we get

𝑃𝑟

[
∀𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] : |𝑊

𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) | ≥ 𝜖

]
≤ 𝑃𝑟 [∀𝑡 ≥ ((1 +𝜓)𝐿 + 1)𝜏𝑘 : |𝑊 𝑗

𝑡 ;𝜏𝑘
(𝑠, 𝒂) | ≥ 𝜖]

≤ ∑∞
𝑡=((1+𝜓)𝐿+1)𝜏𝑘 𝑃𝑟

[
|𝑊 𝑗
𝑡 ;𝜏𝑘
(𝑠, 𝒂) | ≥ 𝜖

]
≤ ∑∞

𝑡=((1+𝜓)𝐿+1)𝜏𝑘 Z𝑡 (𝑠, 𝒂)2𝑒
−𝑐 𝜖2𝑛 (𝑠,𝒂,0,𝑡)

𝑄
2, 𝑗
max

≤ 2𝑒
−𝑐 𝜖2 ((1+𝜓)𝜏𝑘)

𝑄
2, 𝑗
max

∑∞
𝑡=0 𝑒

− 𝑡𝜖2

𝑄
2, 𝑗
max

= 2𝑒

−𝑐 𝜖2 ((1+𝜓)𝜏𝑘)
𝑄
2, 𝑗
max

1−𝑒
−𝜖2
𝑄
2, 𝑗
max

= Θ(𝑄
2, 𝑗
max
𝑒

−𝑐′𝜏𝑘𝜖2

𝑄
2, 𝑗
max

𝜖2
)

(56)

for some positive constant 𝑐 ′. Setting 𝛿
𝑚 |𝑆 |Π𝑖 |𝐴 |𝑖 = Θ

(𝑒− 𝑐′𝜏𝑘𝜖2

𝑄
2, 𝑗
max

𝑄
2, 𝑗
max

𝜖2

)
,

which holds for 𝜏𝑘 = Θ(𝑄
2, 𝑗
max

ln(𝑄 𝑗
max
|𝑆 |Π𝑖 |𝐴 |𝑖𝑚/(𝛿𝜖))
𝜖2

), and the ex-

pression, 𝜖 =
𝜓

2+𝜓 𝛽𝐷
𝑗

𝑘
assures us that for every 𝑡 ≥ 𝜏𝑘+1 (and as a

result for any 𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2]), with probability at least 1 − 𝛿
𝑚 the

statement holds at every state-joint action pair.

□

We have bounded for each iteration the time needed to achieve

the desired probability of 1 − 𝛿
𝑚 . The following lemma provides a

bound for the error in all the iterations.

Lemma 16. Consider the low-𝑄 update given in Eq. 4, with a linear
learning rate. With probability 1 − 𝛿 , for every iteration 𝑘 ∈ [1,𝑚],
time 𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2], and any positive constant𝜓 ≤ 0.712, we have

|𝑊 𝑗
𝑡 ;𝜏𝑘
| ≤ 𝜓𝛽𝐷

𝑗

𝑘

2+𝜓 , i.e.,

𝑃𝑟

[
∀𝑘 ∈ [1,𝑚],∀𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] : |𝑊

𝑗
𝑡 ;𝜏𝑘
| ≤ 𝜓𝛽𝐷

𝑗

𝑘

2+𝜓

]
≥ 1 − 𝛿

(57)

given that 𝜏0 = Θ
(
𝑄

2, 𝑗
max

ln(𝑄 𝑗
max
|𝑆 | |𝐴 |𝑚/(𝛿𝛽𝜖𝜓))

𝜓 2𝛽2𝜖2

)

Proof. From Lemma 15, we know that

𝑃𝑟

[
∀𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] : |𝑊

𝑗
𝑡 ;𝜏𝑘
| ≥ 𝜓𝛽𝐷

𝑗

𝑘

2+𝜓

]
≤ 𝛿
𝑚 .

(58)

Using the union bound, we have that,

𝑃𝑟

[
∀𝑘 ≤ 𝑚,∀𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] : |𝑊

𝑗
𝑡 ;𝜏𝑘
| ≥ 𝜓𝛽𝐷

𝑗

𝑘

2+𝜓

]
≤ ∑𝑚

𝑘=1
𝑃𝑟

[
∀𝑡 ∈ [𝜏𝑘+1, 𝜏𝑘+2] |𝑊

𝑗
𝑡 ;𝜏𝑘
| ≥ 𝜓𝛽𝐷

𝑗

𝑘

2+𝜓

]
≤ 𝛿.

(59)

□

Theorem 3. Let us specify that with probability at least 1 − 𝛿 ,
we have for an agent 𝑗 , | |𝑄 𝑗

𝑇
−𝑄 𝑗∗ | |∞ ≤ 𝜖 . The bound on the rate of

convergence of low-𝑄 , 𝑄 𝑗
𝑇
, with a linear learning rate is given by

𝑇 = Ω
(
(𝐿 +𝜓𝐿 + 1)

1

𝛽
ln

𝑄
𝑗
max

𝜖

𝑄
2, 𝑗
max

ln(|𝑆 |Π𝑖 |𝐴 |𝑖𝑄 𝑗
max

𝛿𝛽𝜖𝜓
)

𝛽2𝜖2𝜓2

)
,

where𝜓 is a small arbitrary positive constant satisfying𝜓 ≤ 0.712

Proof. The Theorem 3 follows from Lemmas 16, 13, 4, and the

fact that 𝑎𝑘+1 = 𝑎𝑘 + (1 +𝜓)𝐿𝑎𝑘 = 𝑎0 ((1 +𝜓)𝐿 + 1)𝑘 .
Specifically, substitute the value of 𝑘 from Lemma 4 (lower

bound for 𝑚), value of 𝑎0 from Lemma 16 (value of 𝜏0), and see

that Lemma 13 and Lemma 16 satisfy the condition for the lower

bound in Lemma 5.

□

E FREQUENCY OF LISTENING TO ADVISORS
This section plots the frequency of listening to each advisor in

some of our experiments. We would like to show that the MA-TLQL

listens more to the good advisor and avoids the bad advisor more

than other related baselines. For these experiments, we consider

the TLQL [21] and ADMIRAL-DM [47] algorithms for compari-

son. Since the CHAT implementation uses the same method to

choose advisors as ADMIRAL-DM (weighted random policy ap-

proach), wewill omit CHAT for these results (performance is similar

to ADMIRAL-DM). DQfD uses pretraining and does not choose

advisors in an online fashion; hence we omit DQfD for these exper-

iments as well.

We consider our first experiment in Section 6 (Experiment 1),

where we had a set of four sufficient advisors of different quality.

The first advisor (Advisor 1) had a better quality than the others,

and the agents must listen more to this advisor. On the other hand,

Advisor 4 only suggested random actions and the agents are ex-

pected to avoid listening to this advisor. In Figure 11(a), we plot a

curve that corresponds to the percentage of time steps an algorithm

listened to Advisor 1 out of all the time steps the algorithm had an

oppourtunity to listen to one of the available advisors. From the

plots, we see that MA-TLQL listens more (compared to the other

baselines) to this advisor (Advisor 1) from the beginning until the

end of training. Since the MA-TLQL uses an ensemble technique

to choose an advisor, this gives it a distinct advantage in the early

stages of training. Further, since MA-TLQL performs an explicit

evaluation of the advisors independent of the RL policy, it manages

(a) Good Advisor (Advisor 1)

(b) Bad Advisor (Advisor 4)

Figure 11: Frequency of listening to advisors in the two-
agent Pommerman experiment with four sufficient advisors
of different quality (Experiment 1)

to listen more to the correct advisor as compared to other baselines.

MA-TLAC also listens more to the good advisor as compared to the

other baselines (TLQL, ADMIRAL-DM). Since TLQL couples the

advisor evaluation with the RL policy, it listens a lot less to the good

advisor as compared to MA-TLQL. Also, TLQL considers the RL

policy as part of the high-level table, which makes it less reliant on

advisors. This could be a problem when good advisors are available.

In Figure 11(b), we plot the percentage of each algorithm listening

to the bad advisor (Advisor 4). We see that MA-TLQL has the least

dependence on this advisor as compared to all other algorithms.

This reinforces our observation that MA-TLQL is most likely to

choose to listen to the correct advisors in this multi-agent setting.

We plot the percentage of listening to Advisor 1 and Advisor 4

in Experiment 3 from Section 6 that had an insufficient set of four

advisors of decreasing quality. The results in Figure 12(a) and (b)

show that MA-TLQL listens more to the good advisor and less to

the bad advisor, same as our observations for Experiment 1.

(a) Good Advisor (Advisor 1)

(b) Bad Advisor (Advisor 4)

Figure 12: Frequency of listening to advisors in the two-
agent Pommerman experiment with four insufficient advi-
sors of different quality (Experiment 3)

Similarly, we plot the percentages of listening to the good and

bad advisor in the Pommerman team environment (mixed setting)

used in Experiment 5 in Figure 13(a) and (b). Here we plot the

results for one of the two pommerman agents playing in the same

team (the other agent’s results are similar). Once again, we note

that MA-TLQL listens more to the correct advisor than the other

algorithms and better avoids the bad advisors compared to the other

algorithms.

F NATURE OF ALGORITHMS CONSIDERED
In Table 1, we tabulate all the algorithms considered in this paper.

The differences between the algorithms stem from the nature of the

algorithm (independent or multi-agent), ability to naturally support

learning from conflict demonstrations (i.e., more than one advisor),

and type of demonstrations that they naturally support (offline

vs. online). Offline demonstrations are demonstrations that are

collected (in a memory buffer) from an advisor before the “training

(a) Good Advisor (Advisor 1)

(b) Bad Advisor (Advisor 4)

Figure 13: Frequency of listening to advisors in the team
Pommerman experimentwith four sufficient advisors of dif-
ferent quality (Experiment 5)

phase” where the algorithm is trained using interactions with the

environment. These demonstrations are typically used to train

the algorithm in a “pre-training” phase before regular training,

as done in several prior works [7, 12, 17]. Alternatively, online

demonstrations are obtained in real-time during the training phase

(and not pre-collected). Here, an agent can actively obtain action

recommendations directly from an advisor for the current game

context.

In general, in all the experiments considered in this paper, we

found that algorithms that consider actions of other agents to pro-

vide best-responses (non-independent) performed better than inde-

pendent algorithms which consider all other agents to be part of

the environment. One reason for this behaviour could be the fact

that independent algorithms break the Markovian assumptions in

reinforcement learning methods [41]. Additionally, we found that

algorithms that learn from online advising perform better as com-

pared to algorithms that learn from offline advising. If algorithms

Algorithm Nature of Al-

gorithm

Number of Ad-

visors

Type of

Demonstrations

DQN [26] Independent Does not learn

from advising

Not applicable

DQfD [12] Independent One Offline

CHAT [47] Independent One Online

ADMIRAL-

DM [38]

Multi-agent One Online

TLQL [21] Independent More than one Online

MA-TLQL

(ours)

Multi-agent More than one Online

MA-TLAC

(ours)

Multi-agent More than one Online

Table 1: Description of all algorithms considered in this pa-
per

learn from online advising, then these algorithms can exploit the

knowledge of advisors in response to dynamically changing other

agent(s), in real-time. Since other agent(s)/opponent(s) are not typi-

cally available before training in multi-agent environments, offline

demonstrations are not very successful in multi-agent training, as

opposed to single-agent training where they were quite successful

[12]. In this paper, we considered environments where the advising

come from multiple sources of independent knowledge. In many

states, the different advisors provide conflicting recommendations.

Hence, algorithms that can effectively resolve conflicting informa-

tion from the different advisors were successful as compared to

other algorithms that are not capable of naturally supporting learn-

ing under multiple conflicting advisors. As seen from Table 1, the

only two algorithms that have all the three desirable properties (i.e,

support multi-agent update, learn from conflicting advisors, support

offline demonstrations) are MA-TLQL and MA-TLAC which gave

the best performance in most of the seven experiments considered

in Section 6.

In our paper, we do not consider HMAT [18] and LeCTR [28]

as baselines, though these can also be classified as action advising

methods.We do not consider these algorithms as appropriate bench-

marks due to two important reasons. First, they are both restricted

to two-agent cooperative settings while we are interested in more

general domains including those with more than two agents and

both competitive and mixed-motive environments. Second, we are

interested in independent learning from a set of external advisors,

while both HMAT and LeCTR focus on peer-to-peer learning (partly

due to their focus on teaching teams, as opposed to our work which

is on more general multi-agent learning problems).

(a) Pursuit Environment

(b) Predator-Prey Environment

Figure 14: Performances of MA-TLQL and MA-TLAC under
changing (learning) advisors and fixed advisors. Here (a) cor-
responds to the setting in Experiment 6 and (b) corresponds
to the setting in Experiment 7, described in Section 6.

G MA-TLQL WITH LEARNING ADVISORS
In all the experiments in this paper we considered advisors that

are fixed and non-changing, which we specified in Section 4. If the

advisors are fixed, their𝑄-values can be determined using the high-

𝑄 updates in MA-TLQL. The fixed nature of advisors allows us to

provide theoretical guarantees of convergence of the high-𝑄 values

(under the assumption of infinite updates in the limit) using similar

arguments as in Theorem 1. However, experimentally we can still

consider other types of advisors which are actively learning dur-

ing the training stage and hence are updating the policies actively

(though using such advisors do not have any theoretical guaran-

tees of convergence). In this section, we will revisit Experiment 6

and Experiment 7 from Section 6 and study the performances of

MA-TLQL and MA-TLAC under learning advisors. For statistical

significance we use the unpaired 2-sided t-test and report 𝑝-values,

as in the earlier experiments.

First we consider Experiment 6, where we used the Pursuit coop-

erative environment along with four pre-trained networks of DQN

as the advisor. Now, we will consider the same set of four advisors

and label them as “fixed advisors”. Additionally, we will let the

same four pre-trained networks of DQN continue training while it

is being actively used for action advising. We label this set of four

advisors as “changing advisors”. In Figure 14(a) we plot the per-

formances (plot of episodic rewards) of MA-TLQL and MA-TLAC

along with the fixed as well as the changing advisor set. While us-

ing the changing advisor set, we see that MA-TLQL and MA-TLAC

outperform their counterparts using the fixed advisors (𝑝 < 0.04).

As the advisors are actively learning and changing their strategies

during the training stage, they are able to provide better action

recommendations to MA-TLQL and MA-TLAC at the different parts

of the environment. This is reflected in their superior performances.

Similarly, we revisit Experiment 7 with the Predator-Prey envi-

ronment and consider two different sets of advisors. In Experiment 7,

we used four pre-trained DQN networks as advisors. We will reuse

the same set of four advisors and label them as the “fixed advisors”.

A continuously training counterpart is labelled as the “changing

advisors”. We plot the performances of MA-TLAC in the Predator-

Prey experiment in Figure 14(b), and once again we notice that

MA-TLAC using the changing advisor set outperforms MA-TLAC

using the fixed advisor set (𝑝 < 0.03).

Hence, experimentally we see that MA-TLQL and MA-TLAC can

still be used with changing advisors which provide good empir-

ical performances. However, the non-stationary nature of these

advisors makes it impossible to provide theoretical guarantees of

convergence. This is similar to using independent algorithms in

multi-agent environments, which do not have any theoretical guar-

antees of convergence to either a local or global optimum, yet

empirically, several prior works have noted that these algorithms

perform well in various multi-agent environments [11, 25].

H MA-TLQL WITH OPPONENT MODELLING
In all the experiments in this paper, the MA-TLQL used a multi-

agent update where it simply tracked opponent actions (by consid-

ering the previous action) and did not perform any active opponent

modelling. The core focus of this paper is learning from advisors,

and we chose not to perform any particular opponent modelling

technique to keep the algorithm simple. However, in this section,

we will implement MA-TLQL along with an opponent modelling

technique that uses a separate neural network (2 Relu layers of 50

neurons and an output layer) to predict the action of the opponent.

The network uses the state and previous action of the opponent as

the input and predicts the action of the opponent. This predicted ac-

tion of the opponent is used by the agent to calculate best responses.

Finally, the actual observed action of the opponent is used to define

a cross-entropy loss function that is used to train the network. We

revisit Experiment 3 and Experiment 4 in Section 6 where we used

four insufficient advisors of different and similar quality. Now, we

will use the same experimental procedure (with the same set of

advisors) and consider the performances of MA-TLQL with and

without active opponent modelling. For statistical significance we

use the unpaired 2-sided t-test and report 𝑝-values.

(a) One vs. One Pommerman: Insufficient different quality advisors

(b) One vs. One Pommerman: Insufficient similar quality advisors

Figure 15: Performances of MA-TLQL with and without op-
ponent modelling using four insufficient advisors. Here (a)
corresponds to the setting in Experiment 3 and (b) corre-
sponds to the setting in Experiment 4, described in Section 6.

We plot the performances in Figure 15. From both Figure 15(a)

and (b) we see that MA-TLQL with opponent modelling performs

better than the MA-TLQL algorithm that does not perform any ac-

tive opponent modelling. In the Figure 15(a) we see that opponent

modelling only provides a small increase in performance (𝑝 < 0.2).

One reason for this is the fact that MA-TLQL without opponent

modelling is already showing a high performance in this experiment

by learning efficiently from the advisors. Alternatively, Figure 15(b)

shows a considerable increase in performance while MA-TLQL is

using opponent modelling (𝑝 < 0.04). Here, the performance of

MA-TLQL without opponent modelling is not as good is the per-

formance in Figure 15(a) and opponent modelling shows a marked

improvement in performance.

I MA-TLQL WITH DIFFERENT NUMBERS OF
ADVISORS

In this section we train MA-TLQL with different number of advisors

in the Pursuit environment considered in Experiment 6 of Section 6.

Figure 16: MA-TLQL with different numbers of advisors in
the Pursuit environment (setting used in Experiment 6, de-
scribed in Section 6)

Recall that in Experiment 6 we considered four pre-trained net-

works of DQN as the advisor (pre-trained for 500, 1000, 1500, and

2000 episodes). Labelling these advisors, we will denote Advisor 1

as the advisor pre-trained for 500 episodes, Advisor 2 as the advisor

pre-trained for 1000 episodes, Advisor 3 as the advisor pre-trained

for 1500 episodes, and Advisor 4 as the advisor pre-trained for 2000

episodes. In this experiment, we initially train MA-TLQL with no

advisor (denoted as MA-QL), and subsequently train MA-TLQL

with the addition of one advisor from the set of advisors. MA-QL

always chooses actions from the low-𝑄 (since there are no advi-

sors, the high-𝑄 is not maintained). The objective is to study the

performance of MA-TLQL under the presence of different numbers

of advisors. For statistical significance we use the unpaired 2-sided

t-test and report 𝑝-values.

The results are given in Figure 16. We see that MA-QL trained

without any advisor gives the least performance. MA-TLQL trained

using one advisor (Advisor 1) gives a better performance than MA-

QL (𝑝 < 0.06). Next, we train MA-TLQL with two advisors (Advi-

sor 1 and Advisor 2), which gives a better performance than MA-QL

and MA-TLQL trained with one advisor (𝑝 < 0.1). Similarly, MA-

TLQLwith three advisors (Advisor 1, Advisor 2, and Advisor 3) gives

a better performance than the case with two advisors (𝑝 < 0.09)

and the best performance is given by MA-TLQL with all four advi-

sors (𝑝 < 0.04). This result shows that MA-TLQL performance can

keep improving with the addition of better advisors (than those

available in the current set), which shows that MA-TLQL is capable

of identifying the right advisor from the available set and exploiting

the expertise of different available advisors in a multi-agent envi-

ronment. From the 𝑝-values, we note that the observation of the

best performance of MA-TLQL with all four advisors is statistically

significant. While we observe constantly improving performances

with each advisor, some of these comparisons are not statistically

significant as provided by the 𝑝-values.

J ILLUSTRATIVE EXAMPLE
In this section we would like to show a toy example where the TLQL

updates as provided by Li et al. [21] takes a longer time to figure out

Figure 17: Toy environment to compare updates of TLQLand
MA-TLQL

the best advisor from a set of advisors, as compared to theMA-TLQL

updates, we introduced in this paper. We will just use a single agent

based grid-world environment as given in Figure 17, instead of

multi-agent environments. The TLQL updates will use the Bellman

update for the low-𝑄 updates and a subsequent synchronization

step to update its high-𝑄 values as proposed in Li et al. [21]. In

MA-TLQL, the low-𝑄 values will use the control update as given

in Eq. 3 albeit in a single-agent fashion (joint actions need not be

considered), since this environment only contains one agent. The

high-𝑄 will use the evaluation update as given in Eq. 1 in a single-

agent fashion. Also, for simplicity, we do not use the ensemble

selection strategy in Eq. 2 for the MA-TLQL action selection in this

example. Rather we only use the high-𝑄 and low-𝑄 updates for

advisor and action evaluation at the given state. Here we have a set

of 6 states {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5,𝐺} with the agent starting at state 𝑆1

and trying to reach the goal state𝐺 . The states 𝑆3, 𝑆4 and𝐺 are the

terminal states where the agent receives a reward of -1 in states 𝑆3

and 𝑆4, and a reward of +1 in state 𝐺 . The state 𝑆5 only exists for

symmetry (cannot be reached in practice). The agent can take one

of the two actions {𝑅, 𝐷} (to denote right and down respectively)

at each state. In this environment, it can be seen that the agent

needs to take action 𝑅 in states 𝑆1 and 𝑆2 to obtain the maximum

rewards. The agent has access to two advisors𝐴1 and𝐴2, where𝐴1

is an optimal advisor providing the correct action (right) at every

state and 𝐴2 is a sub-optimal advisor which provides action 𝑅 with

probability 0.5 and the action 𝐷 with probability 0.5. All transitions

in this domain are deterministic. Also, we specify that the learning

rate (𝛼) is 0.1 and the discount factor (𝛾) is 0.9.

Now we consider the 𝑄-updates (high-level and low-level) per-

taining to both MA-TLQL and TLQL. At the beginning, we initialize

all the 𝑄-values to 0 arbitrarily.

At the initial time step (𝑡 = 0) let us assume that the agent starts

at the initial state 𝑆1. Let both the advisors suggest action 𝑅. Then

the agent takes this action and first updates its low-𝑄 using the

equation,

(ST./AC.) Right Down

S1 0 0

S2 0 0

(a) Low-𝑄 values at time 𝑡 = 1

(ST./AC.) Adv. 1 Adv. 2

S1 0 0

S2 0 0

(b) TLQL high-𝑄 at time 𝑡 = 1

(ST./AC.) Adv. 1 Adv. 2

S1 0 0

S2 0 0

(c) MA-TLQL high-𝑄 at time 𝑡 = 1

Table 2: TLQL and MA-TLQL updates at time 𝑡 = 1. The
columns refer to the actions and the rows refer to the states.

𝑙𝑜𝑤𝑄1 (𝑆1, 𝑅)
= 𝑙𝑜𝑤𝑄0 (𝑆1, 𝑅) + 𝛼

(
𝑟 + 𝛾 max𝑎 𝑙𝑜𝑤𝑄0 (𝑆2, 𝑎) − 𝑙𝑜𝑤𝑄0 (𝑆1, 𝑅)

)
𝑙𝑜𝑤𝑄1 (𝑆1, 𝑅) = 0 + 0.1

(
0 + 0.9 × 0 − 0

)
𝑙𝑜𝑤𝑄1 (𝑆1, 𝑅) = 0.

(60)

Now, TLQL will set the value of the high-𝑄 of both advisors to be

0 (synchronization). The MA-TLQL updates will also yield a value

of 0 for both the advisors. In Table 2 we tabulate the 𝑄-values for

the non-terminal states (𝑆1 and 𝑆2).

At the next time step 𝑡 = 2, the agent is at state 𝑆2. Again let

both advisors suggest the right action. Now the low-𝑄 is updated

as,

𝑙𝑜𝑤𝑄2 (𝑆2, 𝑅)

= 𝑙𝑜𝑤𝑄1 (𝑆2, 𝑅) + 𝛼
(
𝑟 + 𝛾 max𝑎 𝑙𝑜𝑤𝑄1 (𝐺, 𝑎) − 𝑙𝑜𝑤𝑄1 (𝑆2, 𝑅)

)
𝑙𝑜𝑤𝑄2 (𝑆2, 𝑅) = 0 + 0.1

(
1 + 0.9 × 0 − 0

)
𝑙𝑜𝑤𝑄2 (𝑆2, 𝑅) = 0.1

(61)

We specify that when the next state is terminal, the temporal

difference (T.D.) target is the reward itself. Both the algorithms,

TLQL and MA-TLQL, will have the same high-𝑄 values in this case

as well. The 𝑄-values for time 𝑡 = 2 are tabulated in Table 3.

Now, we move to time 𝑡 = 3. Since the goal has been reached

at the previous time step, the agent resets back to the initial state

𝑆1. Now, let us assume that both advisors specify the right action

again at state 𝑆1. The low-𝑄 values are updated as,

(ST./AC.) Right Down

S1 0 0

S2 0.1 0

(a) Low-𝑄 values at time 𝑡 = 2

(ST./AC.) Adv. 1 Adv. 2

S1 0 0

S2 0.1 0.1

(b) TLQL high-𝑄 at time 𝑡 = 2

(ST./AC.) Adv. 1 Adv. 2

S1 0 0

S2 0.1 0.1

(c) MA-TLQL high-𝑄 at time 𝑡 = 2

Table 3: TLQL and MA-TLQL updates at time 𝑡 = 2

(ST./AC.) Right Down

S1 0.009 0

S2 0.1 0

(a) Low-𝑄 values at time 𝑡 = 3

(ST./AC.) Adv. 1 Adv. 2

S1 0.009 0.009

S2 0.1 0.1

(b) TLQL high-𝑄 at time 𝑡 = 3

(ST./AC.) Adv. 1 Adv. 2

S1 0.009 0.009

S2 0.1 0.1

(c) MA-TLQL high-𝑄 at time 𝑡 = 3

Table 4: TLQL and MA-TLQL updates at time 𝑡 = 3

𝑙𝑜𝑤𝑄3 (𝑆1, 𝑅)

= 𝑙𝑜𝑤𝑄2 (𝑆1, 𝑅) + 𝛼
(
𝑟 + 𝛾 max𝑎 𝑙𝑜𝑤𝑄2 (𝑆2, 𝑎) − 𝑙𝑜𝑤𝑄2 (𝑆2, 𝑅)

)
𝑙𝑜𝑤𝑄3 (𝑆1, 𝑅) = 0 + 0.1

(
0 + 0.9 × 0.1 − 0

)
𝑙𝑜𝑤𝑄3 (𝑆1, 𝑅) = 0.009

(62)

Again, high-𝑄 values for MA-TLQL and TLQL will be the same

as the low-𝑄 values and are tabulated in Table 4.

Next, the agent moves to state 𝑆2. We are at time 𝑡 = 4. Let

the advisor 𝐴2 specify action 𝐷 at this state (Advisor 𝐴1 always

specifies 𝑅). Also let us assume that the agent chooses to listen to𝐴2

at this state (𝑄-values of both advisors are the same, so the agent is

indifferent between the two advisors) and hence it performs action

𝐷 (down) from 𝐴2. Now the Q-value for the low-𝑄 can be updated

as,

𝑙𝑜𝑤𝑄4 (𝑆2, 𝐷) = 𝑙𝑜𝑤𝑄4 (𝑆2, 𝐷)
+𝛼

(
𝑟 + 𝛾 max𝑎 𝑙𝑜𝑤𝑄4 (𝑆4, 𝑎) − 𝑙𝑜𝑤𝑄4 (𝑆2, 𝐷)

)
𝑙𝑜𝑤𝑄4 (𝑆2, 𝐷) = −0.1

(63)

The high-𝑄 values for the MA-TLQL update is given by,

(ST./AC.) Right Down

S1 0.009 0

S2 0.1 -0.1

(a) Low-𝑄 values at time 𝑡 = 4

(ST./AC.) Adv. 1 Adv. 2

S1 0.009 0.009

S2 0.1 -0.1

(b) TLQL high-𝑄 at time 𝑡 = 4

(ST./AC.) Adv. 1 Adv. 2

S1 0.009 0.009

S2 0.1 -0.01

(c) MA-TLQL high-𝑄 at time 𝑡 = 4

Table 5: TLQL and MA-TLQL updates at time 𝑡 = 4

ℎ𝑖𝑔ℎ𝑄4 (𝑆2, 𝐴2) = ℎ𝑖𝑔ℎ𝑄3 (𝑆2, 𝐴2)
+𝛼

(
𝑟 + 𝛾ℎ𝑖𝑔ℎ𝑄3 (𝑆4, 𝐴2) − ℎ𝑖𝑔ℎ𝑄3 (𝑆2, 𝐴2)

)
ℎ𝑖𝑔ℎ𝑄4 (𝑆2, 𝐴2) = 0.1 + 0.1(−1 − 0.1)

ℎ𝑖𝑔ℎ𝑄4 (𝑆2, 𝐴2) = −0.01

(64)

All 𝑄-values for time 𝑡 = 4 are tabulated in Table 5.

Since the state 𝑆4 was a terminal state, the agent is back to state

𝑆1. We are at time 𝑡 = 5. At this state, let us assume that both the

advisors specify action 𝑅. Now the agent chooses to perform this

action and updates its low-𝑄 using,

𝑙𝑜𝑤𝑄5 (𝑆1, 𝑅) = 𝑙𝑜𝑤𝑄4 (𝑆1, 𝑅)
+𝛼

(
𝑟 + 𝛾 max𝑎 𝑙𝑜𝑤𝑄4 (𝑆2, 𝑎) − 𝑙𝑜𝑤𝑄4 (𝑆2, 𝑅)

)
𝑙𝑜𝑤𝑄5 (𝑆1, 𝑅) = 0.009 + 0.1

(
0 + 0.9 × 0.1 − 0.009

)
𝑙𝑜𝑤𝑄5 (𝑆1, 𝑅) = 0.0171.

(65)

Since both the advisors specified action 𝑅, both advisors are

assigned the same 𝑄-values in the high-𝑄 in the TLQL update.

Now, the high-𝑄 estimate of advisor 𝐴1 will be the same as the

low-𝑄 value in the MA-TLQL update as well. However, the high-

𝑄 estimate of the advisor 𝐴2 of the MA-TLQL update will be as

follows,

ℎ𝑖𝑔ℎ𝑄5 (𝑆1, 𝐴2) = ℎ𝑖𝑔ℎ𝑄4 (𝑆1, 𝐴2)
+𝛼

(
𝑟 + 𝛾ℎ𝑖𝑔ℎ𝑄4 (𝑆2, 𝐴2) − ℎ𝑖𝑔ℎ𝑄4 (𝑆1, 𝐴2)

)
ℎ𝑖𝑔ℎ𝑄5 (𝑆1, 𝐴2) = 0.009 + 0.1

(
0 + 0.9 × −0.01 − 0.009

)
ℎ𝑖𝑔ℎ𝑄5 (𝑆1, 𝐴2) = 0.009 − 0.0018 = 0.0072

(66)

At this stage (time 𝑡 = 5) all the𝑄-values are tabulated in Table 6.

Comparing the high-𝑄 estimate of TLQL andMA-TLQL, we see that

in the TLQL updates (Table 6b), the agent is indifferent between

following advisor 𝐴1 or advisor 𝐴2 in state 𝑆1 (same 𝑄-values),

while it would decide to choose advisor 𝐴1 at the state 𝑆2. Even

after 5 update steps TLQL has not been able to determine the right

advisor (as advisor 𝐴1 is better than 𝐴2) for both states. In contrast,

(ST./AC.) Right Down

S1 0.0171 0

S2 0.1 -0.1

(a) Low-𝑄 values at time 𝑡 = 5

(ST./AC.) Adv. 1 Adv. 2

S1 0.0171 0.0171

S2 0.1 -0.1

(b) TLQL high-𝑄 at time 𝑡 = 5

(ST./AC.) Adv. 1 Adv. 2

S1 0.0171 0.0072

S2 0.1 -0.01

(c) MA-TLQL high-𝑄 at time 𝑡 = 5

Table 6: TLQL and MA-TLQL updates at time 𝑡 = 5

the MA-TLQL updates found in Table 6c clearly show a higher 𝑄-

value for the advisor𝐴1 than the advisor𝐴2 for both the states. This

example presents a situation where the MA-TLQL distinguishes

between a good and a bad advisor faster than the vanilla TLQL

update as introduced by Li et al. [21].

K EXPERIMENTAL DETAILS
This section provides the complete details of all of our experimen-

tal domains, including details about the reward function and the

advisors used. For the Pommerman and Pursuit environments, we

assume that all the actions of other agents are either directly ob-

servable (fully observable), shared amongst agents, or provided

by the game engine to perform centralized updates. For the MPE

environment, the actions of other agents are observable only during

training and not during execution (CTDE).

Table 7 contains a summary of all of our experimental settings

along with the associated configuration of advisors.

K.1 Pommerman
In Pommerman, the complete set of skills needed to be learned in

order to win games include 1) escaping from the enemy, 2) obtaining

power ups (bombs/life), 3) killing the enemy, 4) blasting walls to

open routes, and 5) coordinating with a teammate (in the team

version) [31].

In our experiments, we consider two Pommerman domains. The

first four experiments use the two-agent version of Pommerman

and the fifth experiment uses the four-agent team version of Pom-

merman. Each episode in our training and execution experiments

corresponds to a full Pommerman game with a randomized board

and a maximum of 800 steps before completion. The game ends

either when all the steps are completed or when one of the two

Pommerman agents dies (two-agent version). In the team version,

the game ends either when all the steps are complete (800 steps

maximum) or when one of the two teams completely dies.

The first experiment (Experiment 1) uses four sufficient advisors

of varying quality. The first advisor (Advisor 1) can teach all the

strategies (i.e., various Pommerman skills as mentioned in Section 6)

needed to win the Pommerman game. Advisor 2 can teach moves

associated with killing the opponent if the opponent is very close to

the agent and defensive strategies that help avoid the enemy. The

third advisor (Advisor 3) can only teach defensive strategies that

Exp. Domain Type Advisors # of

train-

ing

agents

1 Two-

agent

Pommer-

man

Competitive 4 sufficient advi-

sors with differ-

ent quality

2

2 Two-

agent

Pommer-

man

Competitive 4 sufficient advi-

sors with similar

quality

2

3 Two-

agent

Pommer-

man

Competitive 4 insufficient ad-

visors with dif-

ferent quality

2

4 Two-

agent

Pommer-

man

Competitive 4 insufficient ad-

visors with simi-

lar quality

2

5 Four-

agent

Pommer-

man

Mixed 4 sufficient advi-

sors with differ-

ent quality

4

6 Pursuit

SISL

Cooperative 4 insufficient ad-

visors with dif-

ferent quality

8

7 Predator-

Prey

MPE

Mixed

(CTDE)

4 insufficient ad-

visors with dif-

ferent quality

8

Table 7: Description of experimental settings

help in escaping the enemy, and cannot teach aggressive strategies

needed to kill the enemy. Finally, the last advisor (Advisor 4) only

provides random actions. Hence, all the agents should follow the

first advisor as far as possible, and the fourth advisor must be

avoided entirely.

In the second experiment (Experiment 2), we use a new set of

four advisors. Here, the first advisor teaches only defensive skills

(escaping the enemy), the second advisor can only teach aggressive

skills (killing the enemy), the third advisor can only teach strategies

that enable obtaining the power ups, and the fourth advisor teaches

ways to seek and blast open wooden walls which opens up various

paths in the game. It can be seen here that no one advisor is can

teach all the strategies needed to win in Pommerman. However,

together, all four advisors can teach the requisite strategies, and

they need to be leveraged appropriately.

In Experiment 3, we use a set of four advisors of decreasing

quality as in the first experiment; however, none of the advisors are

can teach strategies that seek enemies and kill them (insufficient set).

Also, none of the advisors are capable of teaching the skills needed

to seek wooden walls to blast open. Hence, this set of advisors is

insufficient for winning the Pommerman game. The first advisor

(Advisor 1) can teach strategies to escape from an enemy, kill the

enemy if the enemy is right next to the agent, and obtaining the

power-ups. The second advisor (Advisor 2) can only teach strategies

that help in escaping the enemy or killing an enemy close to the

agent. Advisor 3 can only teach strategies that pertain to escaping

the enemy, and Advisor 4 only provides random suggestions.

In Experiment 4, we have a set of advisors similar to the sec-

ond experiment; however, the advisors are incapable of teaching

sufficient skills needed to win in Pommerman. The first advisor

(Advisor 1) teaches only defensive skills to escape an enemy. The

second advisor (Advisor 2) helps in learning a strategy that can

kill an enemy right next to the agent. The third advisor (Advisor 3)

can teach strategies that lead to obtaining the power-ups, and the

fourth advisor (Advisor 4) can teach skills needed to blast open

wooden walls, if the agent is very close to the wall.

The fifth experiment (Experiment 5) with the team domain uses

the same set of advisors as Experiment 1.

The Pommerman environment was released by Resnick et al. [31]

under the Apache2 license.

K.2 Pursuit domain
The pursuit domain was first introduced by Gupta et al. [8], and

we use the implementation provided by the Petting Zoo environ-

ment [43] (released under MIT license). The game has a set of 8

pursuer agents cooperating with each other to capture a set of

30 evaders in the environment. We use the same reward function

and environmental parameters as in Terry et al. [43] with some

minor modifications. In our setting, the agents get a reward of +1

for hitting (tagging) the evaders and a reward of +30 for catching

an evader. An evader is decided to be caught if it is surrounded by

a group of at least two pursuer agents. The captured evaders are

removed from the environment. All agents get an urgency penalty

of -0.1 at each time step of the game. Each episode has a maximum

of 500 steps. The episode terminates either when all the evaders

are captured or when all the steps are completed. All the pursuers

receive the same reward at all time steps (global reward structure),

where the rewards are distributed amongst all agents. Each pursuer

observes a 7× 7 grid around itself (the entire grid is 16× 16), which
means that the pursuer can get full information about other pur-

suers and evaders within this observable grid and no information

outside this grid.

K.3 Multi Particle Environment
(Predator-Prey)

The Multi Particle Environment (MPE) was originally released

by Lowe et al. [24] as a set of testbeds for the purpose of test-

ing algorithms that pertain to cooperative and mixed cooperative-

competitive settings with characteristics of communication and

obstacle interactions. From this suite of testbeds we use the Simple

Tag environment that pertains to a Predator-Prey setting where

a set of three predators try to capture a single prey. We use the

environment defined as a part of the Petting Zoo library [43] (re-

leased under MIT license). Here all agents have a discrete action

space with a set of 5 actions (four cardinal directions and one action

that signifies no movement). Both the predators and prey have a

continuous observation space that corresponds to the velocity and

position of all agents including the agent itself. The predators get

a reward of +10 for hitting (colliding/tagging) prey and the prey

get a punishment of -10 for being hit by any predator (the prey

is not removed from the environment). The prey also receives a

small additional penalty for exiting the field of play (see Terry et

al. [43] for more details). All the predators receive the same reward

at all time steps (global reward structure), where the rewards are

distributed amongst all predators. Our environment contains eight

predators and eight prey, in addition to five obstacles that block

the path of the predators and prey. Each game contains 500 steps

of training or execution. We model this domain as a CTDE setting,

where the actions taken, and the rewards obtained by all agents are

available to each agent during training, but not available during

execution.

L HYPERPARAMETERS AND
IMPLEMENTATION DETAILS

All the hyperparameters in our implementation of baselines are

either the same or closely match the values recommended by the

respective papers that introduced these algorithms. Our algorithms

also use similar hyperparameters as the baseline algorithms, with

a few exceptions (for performance and computational efficiency

reasons).

The DQN [26], CHAT [47], TLQL [21], ADMIRAL-DM [38], and

MA-TLQL implementations use almost the same hyperparameters.

These algorithms use a learning rate of 0.01, a discount factor of 0.9,

a replay memory size of 2 × 106, and a fixed exploration rate of 0.9.

The target network is replaced every 10 learning iterations using

the hard replacement strategy. The evaluation and target networks

use 3 fully connected layers (2 ReLU layers of 50 neurons and an

output layer). We use a batch size of 32.

For the CHAT implementation, we use the neural network based

confidence variant (NNHAT) from Wang and Taylor [47]. We set

a confidence threshold of 0.6 and use 3 fully connected layers (2

layers using ReLU as the activation function with 50 neurons and

an additional output layer). The advisors are directly used in CHAT

instead of preparing decision based rules from classifier models

as done in [47] due to performance reasons and also because the

advisors used in our experiments are either rule-based agents or

pretrained networks and not human advisors as designed in CHAT.

Since these advisors are considered to be extracted rules in CHAT

(not actual demonstrators/advisors), we allow CHAT dependence

on advisors in the execution phase as well.

We use the PPR technique in TLQL for our experiments, though

this is not used in Li et al. [21]. This is done due to two reasons. First,

unlike in single-agent settings, independent𝑄-learning methods do

not have a policy improvement guarantee in multi-agent settings

(as discussed in Section 4) [41], hence, the vanilla TLQL is not

guaranteed to stop depending on advisors as motivated by Li et

al. [21]. Second, without PPR, the experimental TLQL training

performance is very good (since it has unlimited dependence on

advisors), while the execution performances are very poor (since

advisors are not available during execution). The best execution

performances for TLQL is obtained while using PPR.

Regarding the implementation of the PPR technique, the TLQL,

ADMIRAL-DM, MA-TLAC, and MA-TLQL implementations start

with a value of 𝜖 ′ = 1, which is linearly decayed to 0 at the end of

training. There is no influence of advisors during execution, and

hence, 𝜖 ′ = 0 during execution.

To stay consistent with the description in Li et al. [21], the TLQL

implementation uses a total of 3 networks (evaluation and target

networks for low-𝑄 in addition to high-𝑄). The high-𝑄 and low-𝑄

networks use fully connected layers with the same architecture

as described for the DQN. The MA-TLQL implementation uses

four networks (two evaluation and target networks for the low-𝑄

and high-𝑄 respectively), also having the same configuration as

described for the DQN. Further, the MA-TLQL uses a second replay

buffer for the high-𝑄 in addition to the replay buffer of the low-𝑄 .

Both buffers use the same memory size of 2 × 106.
Regarding DQfD [12], we set 1 × 10

6
as the demo buffer size

and perform 50,000 mini-batch updates for pretraining. The replay

buffer size is twice the size of the demo buffer. The N-step return

weight is 1.0, the supervised loss weight is 1.0 and the L2 regular-

ization weight is 10
−5
. The epsilon greedy exploration is 0.9. The

discount factor is 0.99 and the learning rate is 0.002. The network

architecture uses 3 fully connected layers (2 ReLU layers of 24 neu-

rons and an output layer). The pretraining for DQfD comes from a

data buffer related to a series of games where the advisors compete

against each other.

The MA-TLAC uses two actor networks and two critic networks.

The network architecture is the same as described for MA-TLQL.

The actor networks use a learning rate of 10
−6
, and the critic net-

works use a learning rate of 10
−3
.

For all training experiments, we use a set of 30 random seeds (1 –

30). We use a new set of 30 random seeds (31 – 60) for the execution

experiments.

M WALL CLOCK TIMES
All the training for the experiments were conducted on a virtual

machine having 2 Nvidia A100 GPUs with a GPU memory of 40

GB. The CPUs use the AMD EPYC processors with a memory of

125 GB. The Pommerman experiments took an average of 12 hours

wall clock time to complete, and the Pursuit experiments took an

average of 15 hours wall clock time to complete.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Two-level Architecture in MARL
	5 Theoretical Results
	6 Experiments and Results
	7 Ablation Study
	8 Conclusion
	References
	A Algorithm Pseudocodes
	B Proof of Theorem 1
	C Proof of Theorem 2
	D Proof of Theorem 3
	E Frequency Of Listening To Advisors
	F Nature Of Algorithms Considered
	G MA-TLQL With Learning Advisors
	H MA-TLQL With Opponent Modelling
	I MA-TLQL With Different Numbers Of Advisors
	J Illustrative Example
	K Experimental Details
	K.1 Pommerman
	K.2 Pursuit domain
	K.3 Multi Particle Environment (Predator-Prey)

	L Hyperparameters And Implementation Details
	M Wall Clock Times

