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Abstract
Limited training capacity has contributed to a critical shortage of
licensed commercial pilots. Adaptive educational technologies and
simulators could alleviate current training bottlenecks if these tech-
nologies could assess trainee performance and provide appropriate
feedback. Agents can be used to assess trainee performance, but
there is insufficient guidance on how to provide concurrent feed-
back in simulation-based learning environments. So, we designed
4 feedback conditions that provide varying degrees of elaboration
and used a within-subject study (𝑛 = 20) to compare feedback
approaches. Trainee performance was best when they received
highly-elaborative feedback that modeled expert behaviour. Vari-
ability in participant performance and preferences indicates a need
to adapt the feedback type to individual learners and provides
insight into the use of concurrent feedback in simulation-based
learning environments. Specifically, learners appreciated the expert
model because it facilitated a sense of control which was associated
with lower negative affect and lower extraneous cognitive load.

CCS Concepts
•Human-centered computing→ User studies; • Applied com-
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1 Introduction
There is a critical shortage of pilots [56] which is amplified by
an accompanying shortage of experienced pilots who can train
new pilots. This is problematic given the forecast that we will be
short nearly 80,000 pilots by 2032 [35]. In response to this shortage,
some [33] have argued that adaptive educational technologies could
supplement training. This technology-enhanced learning approach
can employ an agent or other form of artificial intelligence (AI)
to assess pilot trainee performance when using a flight simulator.
Based on the agent’s assessment, the system could then provide
timely feedback to help trainees learn. However, we do not know
how to best provision feedback in this context.

The provisioning of feedback in adaptive educational technolo-
gies has seen success in fields like mathematics [70], language
learning [26], and computer science [5], where student learning
has been linked to the sequencing of tasks [6, 46] as well as the
scaffolding and feedback provided by the system [23, 63]. However,
simulation-based educational technologies have received less atten-
tion. In particular, the study of how to provide visual feedback in
simulator-based pilot training has been limited, which complicates
the task of designing effective visual feedback [42, 63]. It also makes
applying guidelines from other domains difficult [13]. We, therefore,
examine four adaptive feedback approaches to provide insight into
how they affect novice trainees’ performance and experience.

Our results show that feedback augmented with signals that
encourage learner modelling of expert behaviours better supported
performance and was associated with lower levels of both nega-
tive affect and extraneous cognitive load. As we discuss later, this
modelling-based feedback approach has the potential to support
learners in similar environments. Additionally, our findings high-
light the need for adaptive feedback tailored to individual learner
orientations, prior knowledge, and self-regulation abilities.
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2 Feedback
In the context of pilot training, those with sufficient prior knowl-
edge can use changes in their environment as a source of feedback.
However, most novices lack this knowledge and would benefit
from receiving formative feedback [63], which has two key features
(1) verification, which provides correctness information, and (2)
elaboration, which explains why a response is correct or incorrect.
The effectiveness of formative feedback varies based on its tim-
ing [11, 43, 63]; the specificity and complexity of elaboration [63];
learner background-preparation [18] and motivation [63]; task fea-
tures [43]; and instructional domain [68]. Our foci are timing, elab-
oration, specificity, and complexity since these are independent of
individual learner traits.

2.1 Effect of Feedback Timing
Most work exploring feedback timing has focused on two options:
(1) immediate, when feedback is given at the end of a task (e.g.,
a question), and (2) delayed, when trainees must wait to receive
feedback (e.g., after completing a full test) [11, 43, 68]. This focus
on immediate and delayed feedback may be due to the nature of
the disciplines being taught (e.g., mathematics or English) and the
materials that are used in most educational settings (e.g., books and
paper tests).

Systematic reviews and meta-analyses have shown that the ef-
fects of these two timings differ [43, 68]. For example, immediate
feedback was associated with faster learning in a grammar lesson,
while delayed feedback was associated with better retention and
performance on a delayed post-test [11]. This suggests that each
timing might support different goals. In pilot-training contexts,
delayed feedback is typically handled through debrief sessions with
trainers [16], and immediate feedback is not extensively used be-
cause there is little time to pause for feedback between tasks during
a flight exercise.

Going beyond this binary, simulators and flight exercises afford
a third timing option: concurrent. Concurrent feedback is provided
during a task and allows a trainee to change their response prior to
task completion. This feedback could be ever-present (i.e., persis-
tent), presented when a severe error is being made (i.e., bandwidth—
exceeds a threshold [22]), presented at specified times (i.e., sched-
uled), or presented upon request (i.e., learner-controlled). Concur-
rent feedback in flight training is provided during a flight exercise
where the trainer is present [16].

Prior work shows conflicting results when comparing concur-
rent and delayed feedback [49, 71]. Researchers have also reported
differences when comparing across types of concurrent feedback
[39]. Taken together, this indicates that the benefits of concurrent
feedback are likely as nuanced as those for immediate and delayed
feedback, suggesting a need for additional research in simulation-
based training environments. Since simulators can be used to sup-
port replay and debrief sessions as part of supervised training,
our investigation instead focuses on concurrent feedback for pilot
trainees who are learning on their own.

2.2 Specificity and Complexity of Elaboration
Similar to timing [54], research on feedback elaboration has shown
that the amount of elaboration may interact with learner traits,

including their existing capabilities. High-ability students have been
shown to perform better with pure verification feedback whereas
low-ability students produced their highest scores when receiving
more elaboration [34]. Motivation has also been linked to how
learners respond to different degrees of elaboration [21]. Students
with high performance-oriented learning goals (i.e., a desire to be
positively evaluated by others) were shown to perform better with
more elaborate feedback in a decision-making simulation [21].

Specificity and complexity are sub-features of elaboration. Feed-
back that lacks specificity can leave students uncertain about how
to respond, increase cognitive burden, cause frustration, and reduce
motivation [63, 73]. But feedback that is too specific or presented
poorly can increase cognitive processing demands [63]. Research on
feedback complexity in academic subjects has produced similarly
inconsistent results: some studies found no effect [64] and others
found negative effects [48]. Very little of this work has examined
the effect of feedback specificity and complexity with respect to
concurrent feedback. Work, such as that done by Davis et al. [21],
only examines immediate feedback, which limits our understand-
ing of how individual trainees will respond to different degrees of
specificity and complexity in an environment that places a higher
cognitive load on learners, as is the case in flight simulators.

3 Adaptive Pilot Training System
Reinforcement-learning (RL) agents have been used within adaptive
training systems for a range of tasks including student skill develop-
ment [32, 53, 61] and improving teaching strategies [72]. Guevarra
et al. [33] detail an approach to using RL agents for providing forma-
tive feedback to pilot trainees where an agent that flies the aircraft
[2, 55, 60] serves as an expert model to enable the identification
of learner errors. Building on this idea, we created an adaptive
training system that consists of three main components: (1) a flight
simulator; (2) an RL agent that evaluates student performance; and
(3) visual feedback to support learner self-correction.

We used the X-Plane 11 simulator for the first component because
high-fidelity simulators can support learning [18]. This desktop
simulator allows users to control the pitch and roll of an aircraft as
illustrated in Figure 1 and 2.

Component 2 integrates a behavioural cloning agent as the tu-
tor’s pedagogical agent [7]. In our case, the agent was trained
to mimic a flight instructor using imitation learning with Stable-
Baselines3 [36, 59]. A recording of the flight instructor performing
a fundamental flight task called "Straight and level" (see Section 3.1)
served as the basis for the expert model. Following training, the
pedagogical agent observes the environment as pilot trainees inter-
act with the simulator, comparing trainee actions with the actions
the agent expects to see based on its representation of expert per-
formance. That assessment is then used to drive some forms of
concurrent feedback.

Component 3 is the primary focus of the present study. It enables
different approaches to providing feedback about trainee perfor-
mance. These approaches are described in Section 3.2.

3.1 Learning Task
Straight and level (SnL) is an early maneuver that pilot trainees are
taught. As the name implies, it consists of keeping the aircraft level
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Figure 1: Rotation around the pitch axis can be adjusted by
moving the mouse vertically.

Figure 2: Rotation around the roll axis can be adjusted by
moving the mouse horizontally

Table 1: Feedback attributes (Verif. - Verification; Elab. - Elab-
oration; Specific. - Specificity; Complex. - Complexity)

Verif. Timing Elab. Specific. Complex.
B No None None None None
BG Yes Bandwidth Low Low High
DG Yes Bandwidth Moderate Moderate Moderate
DD Yes Persistent Very High High Low
TA Yes Persistent High High Low

while flying straight towards a target. Advanced tasks build upon
the foundational skills learned from SnL.

Studying trainee responses to feedback for this fundamental task
allows us to better control for factors such as model accuracy and
task difficulty; laying the groundwork for complex scenarios. The
simplicity of the task also allows us to study how novice trainees
(our intended learners) might respond.

3.2 Feedback Options
All 5 feedback conditions are described below and summarized
in Table 1. These conditions were designed by a team of pilots,
pilot instructors, and researchers based on Shute’s guidelines [63].
For this study, we chose to focus on visual feedback because it
aligns more closely with the training practices already used in
flight-training environments, where a system like ours would be
integrated into the learning process.

3.2.1 B: baseline (control): There is no verification, diagnosis of
trainee errors, or provisioning of explicit feedback. This condition
mirrors current simulator practices, where only implicit feedback is
provided through the simulated environment and physics system.

In this case, the world is updated to reflect trainee actions and
the trainee must know how to interpret the world and respond in an
appropriate way. All other feedback conditions provide verification
to trainees.

3.2.2 BG: binary glow (Figure 3a): This feedback colours the edges
of the screen yellow when the pitch or roll of the aircraft exceeds
acceptable thresholds as determined through comparison to the
agent. The strength of colouring is proportional to the degree of
deviation. If the trainee corrects their mistake, the glow goes away.

Error thresholds for both this and the directional glow condition
(see below) are based on regulator-defined error tolerances for the
flight task [17].

3.2.3 DG: directional glow (Figure 3b): This feedback is similar
to binary glow but glow is only added in the direction of devia-
tion. Thus, it suggests the direction of correction; the trainee must
determine magnitude.

3.2.4 DD: dancing dots (Figure 3c): This feedback is displayed in a
black square near the center of the screen. There are two coloured
lines drawn on this square: the green line represents trainee input
and the teal line shows the expert model for how to respond to the
current situation.

Trainees should be able to use this representation to identify the
difference between what they are doing, what they should be doing,
and adjust their actions accordingly. This approach is similar to
mixed-reality techniques for motor-skill training [28] that model
expert performance through a visual representation (e.g., a video
overlay of a silhouette), which has helped improve learner motor-
skills in sports-training contexts [44].

3.2.5 TA: target alignment (Figure 3d): This feedback option is
based on current flight instruction guidelines [1]. It provides addi-
tional visual support for something pilot-trainees are supposed to
do. As such, it is an augmentation of the baseline that does not rely
on the agent.

This cognitive support marks a reference point on the target and
the nose of the aircraft using green circles. The lines are meant to
help align these points vertically while maintaining a fixed distance
between them. Trainees should be able to use themarkers to identify
corrective actions.

4 Methods
This mixed-methods, within-subject study counterbalanced trainee
exposure to the feedback conditions and collected information
about trainee performance, experiences, and preferences. All par-
ticipants who consented and began a study session received $30.

4.1 Study Procedures
After giving consent, participants received instruction on how to
control the aircraft and perform the flight task. Because one’s af-
fective response can impact learning [14], attention, and decision
making [52], a baseline measurement of trainee affect was taken.
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(a) (b) (c) (d)

Figure 3: Feedback conditions (a - BG; b - DG; c - DD; d - TA)

We call this incoming (I). The measure was taken using the short
form of the international positive and negative affect schedule (I-
PANAS-SF) [66]. It consists of two subscales, positive affect (PA; 𝛼 =
.75) and negative affect (NA; 𝛼 = .76), which are measured through
a 10-item questionnaire and rated using a 5-point Likert scale (1-
Strongly disagree to 5-Strongly agree). Scores for each subscale
range from 5 to 25.

Following this, participants were exposed to each feedback con-
dition, within which they attempted SnL three times. After complet-
ing the flight tasks within each condition, their affect was measured
using the I-PANAS-SF. We also measured extraneous load [65] at
this point to understand how feedback features interact with the
already high cognitive demands of flight tasks [31]. We used Lep-
pink’s questionnaire [47], adapted to our domain, which has two
Likert-scale items dedicated to measuring extraneous load. These
were rated from Strongly Disagree (1) to Strongly Agree (10) and
the average of both items was taken as the score. Because cognitive
load is constrained by working memory capacity, this participant
attribute was measured at the start of the study using the Corsi
block tapping task [41]. The score for this can range from 2 to 9.

After all conditions were completed, participants were asked to
rank the feedback conditions in order of perceived benefit and ex-
plain their rankings. Demographic information was then collected,
which included participant age, gender, experience with games,
experience with flight simulators, and experience with physical
planes.

For counter balancing we used a Latin-square generator [62].
Given expected effect sizes, we recruited enough participants to
complete two balanced Latin squares (𝑛 = 20). Participant data was
reviewed immediately after collection. If any issue was detected, we
repeated that sequence in the Latin square with another participant
until we had one valid sample for each sequence in the squares.

A licensed pilot trainer scored flight performance on a 4-point
scale [17], where 4 is the best score possible. We summed scores
across attempts to obtain the condition score.

Study instruments are available via OSF1

4.2 Participants
Following institutional approval, we recruited 24 participants through
a mailing list. Of these, 4 were excluded because they intentionally

1https://osf.io/2cjv9/?view_only=b7cd5d32edcd439bb059525ae18575f3

crashed the plane or otherwise did not follow instructions, an error
in the simulator caused the application to crash, or the experimenter
made an error when assigning the condition sequence.

Data from the remaining 20 were analyzed. Their ages ranged
from 20 through 38 years (𝑀 = 23.2, 𝑆𝐷 = 3.76). Their working
memory capacity ranged from 4 through 9 (𝑀 = 6.5, 𝑆𝐷 = 1.32),
which is within the range expected for healthy adults [41, 69].

4.3 Analysis Procedures
As is common with mixed-methods approaches [20, 45], we comple-
ment quantitative analyses of trainee performance, preferences, and
experience with qualitative analyses of information about trainee
preferences. This triangulation accounts for the methodological
weaknesses of each approach [67].

We used Shapiro-Wilk to check the normality assumption. When
violations were detected, the Q-Q plots were examined to see
whether these violations were within the tolerances of the sta-
tistical tests we planned to use (e.g., ANOVA). Highly-skewed dis-
tributions were corrected with 𝑙𝑜𝑔(𝑥+1) transformation [58]. When
this transformation allowed the normality assumption to hold, we
proceeded with parametric statistical tests. When it did not, we
applied the equivalent non-parametric test to the untransformed
data. In all cases, we report descriptive statistics as violin plots of
the untransformed data to facilitate interpretation.

We used the rstatix library [40] to conduct tests. One-way re-
peated measures ANOVAs were used to test for differences across
conditions. We report 𝜂2 as a measure of effect size and applied
Greenhouse-Geisser correction when Mauchly’s test revealed a
violation of the sphericity assumption. When data did not meet
the normality assumption, we instead used the Friedman test and
report Kendall’s𝑊 as the effect size. Significant results (𝑎𝑙𝑝ℎ𝑎 =
.05) were followed by pairwise comparisons using paired t-tests for
ANOVA and Wilcoxon Signed Rank tests for Friedman. We report 𝑟
or Cohen’s 𝑑 as effect sizes and controlled for multiple comparisons
using Holm’s method [37] .

To analyze preference rankings, we performed a Chi-square test
to examine whether the pattern of ranks was random (as recom-
mended by Finch [29]), provided a rank frequency chart for each
condition, and provided a pairwise rank comparison table. We also
provided Dowdall scores [30] which are calculated by taking the
sum of the reciprocal for each rank given to a condition. In our
case, scores ranged from 1 to 0.2, with 1 indicating a higher rank.

https://osf.io/2cjv9/?view_only=b7cd5d32edcd439bb059525ae18575f3
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Explanations of preference rankings were analyzed using the-
matic analysis as described by Braun et al. [9]. The first and last
authors familiarized themselves with the data before deciding on
codes using a consensus-based approach. They then independently
coded the data and reconvened to identify themes (Section 5.5).

Our analysis scripts and codebook have also been included in
our OSF project.

5 Results
We found differences in trainee performance, the cognitive demands
and affective responses associated with feedback conditions, and
trainee preferences.

5.1 Differences in Performance
The Friedman test detected a small difference (𝜒2 (4) = 11.8, 𝑝 =

.019,𝑊 = .15) in trainee performance across conditions. The sub-
sequent Wilcoxon signed-rank tests (Table 2) indicated trainees
performed better when in dancing dots than they did in some of
the other conditions.

Table 2: Differences in trainee performance between feed-
back conditions (𝑝 adj = corrected 𝑝 value)

Group 1 Group 2 𝑊 𝑝 𝑝 adj 𝑟

B BG 65.50 .916 1.000 0.06
B DD 2.50 .006 .057 0.63
B DG 84.00 .176 .880 0.35
B TA 92.50 .769 1.000 0.08
BG DD 21.00 .049 .346 0.47
BG DG 72.50 .060 .357 0.44
BG TA 88.00 .597 1.000 0.16
DD DG 153.00 .003 .032 0.65
DD TA 110.50 .026 .212 0.50
DG TA 77.50 .738 1.000 0.05

Note the maximum possible score was not achieved in the base-
line condition but was in other conditions (See Figure 4), suggesting
that each of the experimental feedback conditions provided value
to some trainees.

5.2 Differences in Extraneous Load
There were large differences across feedback conditions for extra-
neous load: 𝐹 (4, 76) = 7.80, 𝑝 < .001, 𝜂2 = .22. We see considerable
variability in the distributions for this measure (Figure 5), with
dancing dots imposing the least extraneous load (Table 3). The ex-
traneous load distribution for dancing dots appears to be bimodal,
which indicates a group of participants experienced levels of extra-
neous load that were similarly high to those seen in other conditions.

5.3 Differences in Affective Experiences
No measurable difference was detected across conditions for pos-
itive affect (𝐹 (2.96, 56.32) = 1.07, 𝑝 = .37, 𝜂2 = .01), but differ-
ences were detected for negative affect (𝐹 (3.49, 66.22) = 6.31, 𝑝 <

.001, 𝜂2 = .09). When considered alongside the descriptive statistics
for positive affect (Figure 6) and negative affect (Figure 7), these

Figure 4: Performance score distributions by condition.

Figure 5: Extraneous load distribution by condition.

Table 3: Differences in extraneous load between conditions

Group 1 Group 2 𝑡 df 𝑝 𝑝 adj 𝑑

B BG 1.74 19 .099 .494 0.39
B DD 4.60 19 < .001 .002 1.03
B DG 1.53 19 .143 .500 0.34
B TA -0.04 19 .968 1.000 -0.09
BG DD 2.94 19 .008 .059 0.66
BG DG -0.06 19 .957 1.000 -0.01
BG TA -1.60 19 .125 .500 -0.36
DD DG -3.20 19 .005 .038 -0.72
DD TA -4.51 19 < .001 .002 -1.01
DG TA -1.84 19 .082 .493 -0.41

ANOVA results suggest the selection of feedback only risked in-
creased negative affect with little potential benefit to positive affect.

Pairwise comparisons of participants’ negative affect across con-
ditions (Table 4) show dancing dots had the lowest observed neg-
ative affect (𝑀 = 2.2, 𝑆𝐷 = 2.64) and the baseline condition was
associated with high negative affect (𝑀 = 4.8, 𝑆𝐷 = 3.01).

https://osf.io/2cjv9/?view_only=b7cd5d32edcd439bb059525ae18575f3
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Figure 6: Positive affect distribution by condition.

Figure 7: Negative affect distribution by condition.

Table 4: Differences in negative affect between conditions

Group 1 Group 2 𝑡 df 𝑝 𝑝.𝑎𝑑 𝑗 𝑑

B BG -0.49 19 .628 1.000 -0.11
B DD 1.66 19 .113 .904 0.37
B DG 0.93 19 .363 1.000 0.21
B I -3.27 19 .004 .052 -0.73
B TA -0.54 19 .593 1.000 -0.12
BG DD 2.88 19 .010 .106 0.64
BG DG 1.34 19 .196 .980 0.30
BG I -3.11 19 .006 .070 -0.70
BG TA 0.17 19 .867 1.000 0.04
DD DG -1.48 19 .156 .959 -0.33
DD I -4.20 19 < .001 .007 -0.94
DD TA -2.31 19 .032 .292 -0.52
DG I -3.95 19 <.001 .012 -0.88
DG TA -1.55 19 .137 .959 -0.35
I TA 2.76 19 .013 .125 0.62

5.4 Differences in Trainee Preferences
The Chi-square test indicated there was a non-random pattern in
the ranks given to each feedback condition, 𝜒2(4, 𝑁 = 20) = 36.92,
𝑝 < .001. Dowdall scores, provided in Table 5, show dancing dots
was most preferred and baseline was least preferred, suggesting
that participants appreciated having some feedback during the task.

Table 5: Dowdall score by condition

B BG DG DD TA
Dowdall Score 4.73 6.88 8.98 16.58 8.48

Looking at the rank frequency chart (Figure 8), which shows
how often a condition was assigned each rank, confirms this inter-
pretation. Baseline was never ranked first and dancing dots was
ranked first by nearly 70% of participants, making it the highest
rated condition by rank counts.

Figure 8: Rank frequency for each condition

Table 6 shows the frequency with which participants ranked
one condition over another. Each cell in the table reflects how
often a given condition (the row label) was ranked higher than
another condition (the column label). It shows that dancing dots
was ranked above the baseline condition in all cases and target
alignment was ranked above the baseline in 17 cases. Both the
dancing dots and target alignment conditions provided extensive
elaboration. As such, these rankings indicate participants had a
preference for elaborative feedback.

Table 6: Pairwise rank comparison

B BG DG DD TA
B - 5 4 0 3
BG 15 - 6 2 9
DG 16 14 - 3 13
DD 20 18 17 - 16
TA 17 11 7 4 -
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5.5 How do users experience and respond to the
feedback conditions?

Participant explanations of their feedback rankings fell into five
interacting themes. They commented on how the specificity and
nature of elaboration contributed to feedback constructiveness and
how the evaluated feedback types impacted their workload, sense of
control, and perceived performance. These, in turn, related to how
they responded to the feedback through their behaivours and their
associated affective responses.

5.5.1 Perceived Performance. Participants distinguished between
their performance and how much they seemed to learn. As P1
explained, "the other feedback styles were helpful in allowing me
to reach the goal, but I don’t think they improved my ability to
complete the task without them". These perceptions played a role in
participant preferences, as they appeared to prioritize either their
perceived learning or performance.

When prioritizing performance, participants chose the feedback
condition that made it "easiest to stay level" (P11), "felt the easiest"
(P3), or where they "did the best" (P3). When prioritizing learning,
they chose "the most easy ones to follow ... and [the ones that]
helped [them] understand how to fly the plane" (P5), with P20
commenting on how they had learned to fly from the feedback they
received prior to the final condition. P20’s final condition was the
baseline that provided no additional feedback.

5.5.2 Sense of Control and Feedback Responsiveness. Participants
said their ability to control the plane influenced their preferences.
Participants disliked feedback that felt unresponsive (e.g., "glows
were ... not the quickest when it came to input", P13). They also
disliked feedback that made them feel like they had less control, as
was the case for target alignment because it "was easy to overshoot"
(P2) and they could not "understand how much adjustment was
needed" (P19). In contrast, participants reported feeling "more in
control" (P15) using dancing dots because it "resulted in the most
precise and accurate results" (P19). This aligns with our analysis
of preference rankings, which identified dancing dots as the most
preferred feedback condition.

5.5.3 Workload. The cognitive workload imposed by a condition
appeared to be closely tied to participants’ perceived performance
and sense of control. Participants expressed a preference for feed-
back that supported "efficiency in terms of how easily you could
tell you were succeeding" (P7) and allowed them to "figure out
the sensitivity of [the] controls" (P6). Such feedback reduced their
workload and facilitated its practical use.

In general, simple feedback helped trainees focus on adjusting
their performance by directing their attention to key aspects of
the task, such as keeping the plane level (directional glow; P4) or
flying "the plane slowly and smoothly" (dancing dots; P5). A lack of
"visual clutter" (P20) and fewer "distractors" (P14) further supported
their ability to concentrate on the intended task. Trainees favoured
feedback that "felt the easiest" (P3) or was "straightforward" (P9).
Conversely, conditions were liked less when they were "distracting
and made it hard to tell what [trainees] needed to adjust" (P20),
caused them to "shift back and forth" (P14), or "required more
overthinking which, in turn, led to worse control of the plane" (P7).

These findings align with the preference rankings and cognitive
load results, which showed that dancing dots imposed less cognitive
load than most conditions and was the most preferred.

However, reduced workload was not always beneficial. Some
noted that easier-to-use feedback allowed them to focus by "ig-
noring everything else" (P4). While this might support learning
within a simulator, it could pose a high risk in real-world scenarios.
Notably, participants who prioritized learning over performance
viewed this as a drawback, stating that "directional glow is a little
more difficult [to use], but engaged [them] with flying more" (P2).

5.5.4 Affective Responses. Similar to workload, participants’ af-
fective responses seemed to be driven by whether they could use
the provided information to make sense of what was happening to
adjust their actions in a way that supported their performance. In
general, higher-workload feedback conditions, those that provided
less control, and those that participants felt provided insufficient
information were associated with less productive affective states.
This includes feedback that made the trainee "hyperaware" (target
alignment; P10), was "irritating" (BG; P12), was "frustrating" (bi-
nary glow, P19); or was "confusing" (directional glow; P8). These
responses came from feedback that was considered "vague" (P11),
feedback that "said you were doing it wrong and did not help you
to fix [it]" (P12), or feedback that was "difficult to understand" (P18)
from the perspective of what correction was needed.

Few purely positive affective responses were reported. Positive
responses were typically tied to reductions in workload: "I felt you
weren’t distracted by the glow on the sides and I feel it made me
less anxious" (P10). This reduction in negative affect was used to
justify the provided rankings, with feedback types that reduced
negative affect being preferred to those that were associated with
increased negative affect or confusion.

5.5.5 Feedback Constructiveness. Across conditions, participants
noted that the amount of information (elaboration) and specificity
in feedback influenced their ability to use it effectively and make
corrections (i.e., how constructive they perceived the feedback to
be). In general, feedback that provided sufficient elaboration and
specificity supported trainee interpretation, decision-making, and
action-taking; it was, therefore, perceived as more constructive. Par-
ticipants appreciated feedback that "guid[ed them] if [they] made a
mistake so that [they] could better understand what a correct align-
ment would look like" (P1). For example, directional glow helped
participants "understand [what] direction [they] should stop going
in" (P5), while dancing dots "told you exactly what you needed to
do to fly the plane straight" (P9). Conversely, less specific feedback
(e.g., binary glow) elicited frustration, with comments like, "it failed
to provide information about the direction I had to go to fix it" (P2).

Trainees’ prioritization of learning versus performance, as de-
scribed in Section 5.5.1, also shaped their perceptions of feedback
elaboration and specificity. Feedback that indicated when they were
"doing something wrong but still allow[ed them] to use the nose of
the plane as a guide" (P1) improved self-efficacy because they felt
the more elaborate and specific feedback hindered their ability to
complete the task independently, with P1 remarking, "I don’t think
they improved my ability to complete the task without them".

These examples highlight a desire for different levels of infor-
mation, with participants differing on whether the same feedback
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condition provided or lacked the necessary details to adjust their
behaviour. This variation in perceived constructiveness was further
influenced by the visibility and timeliness of the feedback. Some
feedback types were disliked because they were "not the quickest
when it came to input" (P13), while others were overly responsive,
leading to participants "jerking the controls randomly" (P2). For
glow-based conditions, the gradual fading in and out of the feed-
back appeared to make small corrections less noticeable. As one
participant explained, "it [was] not specific... I also was struggling
to notice the light flashing" (P16).

One factor that consistently impacted perceived constructive-
ness was the presence of verification. Participants reported that the
only condition with no verification (the baseline) was "the least use-
ful since there were no indicators at all" (P9). This aligns with our
analysis of both preference and performance data, which demon-
strated that having some form of feedback was always preferred in
addition to the provided feedback supporting task performance.

6 Discussion
Most examinations of feedback in adaptive training systems fo-
cus on immediate or delayed feedback. Ours instead explored the
ability of simulator-based training environments to provide dif-
ferent types of concurrent feedback and examined their impact
on trainee performance, preference, cognitive load, and affect. We
found that dancing dots (an expert modelling approach) supported
better performance while also resulting in lower (extraneous) cogni-
tive load and negative affect. Moreover, 70% of participants ranked
this feedback condition as their preferred approach and participant
reports indicate they preferred feedback that either improved their
perceived performance or perceived learning.

6.1 Learning and Performance
Jointly, participant open-ended responses and task performance
indicate that they learned the desired skills within the 30 minute
training session. This rapid skill acquisition aligns with findings
from other situated-learning settings [25] and a meta-analysis of
simulator use in higher-education [18]. It is suggestive of the po-
tential for retention and transfer to other flight tasks or real-world
flight settings [12, 19, 25]. Whether trainees retain the skills they
exhibited or can apply them in real-world flight tasks remains to
be seen.

Examination of participant performance across feedback condi-
tions shows that most feedback designs neither helped nor harmed
trainee performance, in the short term. This could be related to
differences in individual trainee backgrounds and habits or feed-
back design, with all of these factors being known to interact with
learning and learner behavioural patterns [3, 15, 27].

6.2 Elaboration and Modelling Support Trainees
Trainees’ stronger performance in the dancing dots condition pro-
vides insight into feedback design for situated learning for skill
development. It highlights the value of learning through modeling
expert behaviour, aligning with findings from other contexts [4].

Dancing dots gave the pedagogical agent a privileged status that
made it desirable for trainees to try and model its behaviour. The

interface design, which presented a simplified and uniform repre-
sentation (the two dots) of trainee and expert behaviour, was able
to provide elaborated feedback and encourage the trainee to engage
in behavioural modelling. Trainee comments reflect this, noting
that dancing dots gave them the information they needed to adjust
their behaviours to match the desired behaviours. Moreover, the
benefit of combining this elaboration with modelling is reflected in
their poorer performance in the target alignment condition, where
they received similar amounts of information via an alternative
representation but were not shown a behavioural model.

Our findings suggest the potential for improving human learning
by augmenting feedback in simulators with signals that encourage
learner modelling of expert behaviours [15]. Specifically, the learn-
ing of contextualized, dynamic, and complex tasks in other simula-
tion environments, where appropriate learner responses similarly
depend on continually updating contextual variables [42], could be
better supported through this modelling feedback approach.

6.3 Experiencing Feedback
Examining how trainees attended to information provided by differ-
ent feedback conditions revealed that they often ignored aspects of
feedback to focus on other dimensions. A similar behaviour was ob-
served in studies of delayed feedback [26], where this learner strat-
egy compensated for AI errors. However, in our study, it emerged
as a maladaptive self-regulation strategy that trainees employed
when overwhelmed by the task. In the present study, the use of
this strategy interfered with learning and was characterized by
trainees alternating between pitch or roll correction. These find-
ings underscore the need to reconsider how feedback is designed
and provisioned in these higher-demand learning environments.

6.4 Feedback Provisioning Needs to be Adaptive
While the modelling feedback (i.e., dancing dots) was superior to
the other forms of feedback, the results across conditions for trainee
performance, cognitive load, affect, and experience indicate a need
for personalization and adaption in feedback provisioning. For ex-
ample, trainee feedback preferences aligned with their learning
goals: those with performance-oriented goals favoured elaborative
feedback (e.g., dancing dots), while those with learning-oriented
goals (i.e., the desire to develop new skills and competencies) pre-
ferred simpler designs (e.g., directional glow) [21]. By adjusting
the type of feedback to align with learner orientation, we could
help support learner motivation [38] and potentially scaffold the
transition from a performance to a learning orientation.

However, identifying the optimal timing and type of feedback
for this sort of adaptivity requires further research. In the interim,
adaptation can be left in the hands of the trainee. Giving them con-
trol over which feedback to use could support adoption by meeting
their affective needs [57], but trainees’ limited self-regulatory skills
[74] and knowledge [11, 51, 51] may require additional guidance
through features, like open-learner models and learning dashboards
[8, 10, 23, 24, 50, 51]. Trainer-controlled feedback is another option,
where trainers could configure the concurrent feedback settings to
help pilot-trainees progress. Data collected from the above settings
could then be used to understand learner responses to feedback and
build an agent for adaptively provisioning appropriate feedback.
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Based on a combination of the literature and our findings, we
suggest going beyond selecting the feedback approach to changing
the learning task based on each trainee’s prior knowledge. The
bimodal distribution of extraneous cognitive load observed in the
dancing dots condition indicates that we had two groups of trainees
who varied in some combination of their cognitive abilities and prior
knowledge. Since it is well established that completing tasks better
supports learning for those with sufficient background knowledge,
[65], we could start with worked examples of flight tasks for those
with less prior knowledge and increase the level of detail provided
in the simulation for those with more background preparation [18].

7 Limitations
This study used counter-balancing to control for the influence of
individual participant traits. This efficient design allowed us to
identify differences in trainee performance across conditions and
highlighted a need for research that specifically controls for trainee
expertise as well as their cognitive and self-regulatory abilities.
Furthermore, the controlled nature of this study helped to identify
potentially effective and ineffective approaches to feedback design,
laying the foundation for future longitudinal research that could
provide insight into the retention and transfer of acquired skills.
Ideally, such work would include tasks that allow for the assessment
of both near and far transfer.

8 Conclusion
We conducted a within-subjects study examining different feed-
back conditions to better understand how concurrent feedback
can be used to improve pilot-trainee performance. We found that
highly elaborative feedback that modelled experts supported train-
ing in this complex, simulator-based environment that affords the
provisioning of concurrent feedback to trainees. We leveraged this
ability to shed light on the interaction between trainee performance
and different characteristics of concurrent feedback that include
whether it is ever present or triggered by learner performance. We
found that ever-present concurrent feedback placed less extrane-
ous cognitive load on trainees, potentially allowing them to focus
on learning. Specifically, the feedback that continuously modelled
expert behaviour and allowed the explicit comparison of trainee
behaviour to that of an expert model best supported performance.
Participant reports and variability in both their performance and
preferences across feedback conditions highlighted the need to
adapt feedback based on individual characteristics, such as prior
knowledge. This need to model expert performance and adapt feed-
back approaches within simulation-based learning environments
expands our knowledge of how to provide concurrent feedback.
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