Autonomous Waypoint Generation Strategy for On-Line Navigation in
Unknown Environments

Sanjeev Sharma and Matthew E. Taylor

Abstract— This paper introduces a reinforcement learning
(RL) based autonomous waypoint generation strategy (AWGS),
for on-line path planning in unknown environments. An RL
agent intelligently analyzes its surroundings and generates
waypoints within the robot’s field of view. The RL agent
uses an MDP for waypoint generation that is formulated to
be independent of the domain, robot model, and state space
dimensionality. The RL agent requires no environment-specific
information beyond the robot’s field of view. A path to the
selected waypoint is then generated by a path planner. AWGS
is applicable to many path or motion planners. However, for
brevity, this paper focuses on path planning without the robot’s
dynamics constraint. Experiments (i) compare the performance
of RL agent’s policies with RRTs and A*, and (ii) show that
AWGS can: (a) be trained and then used with different robot
models, domains, and state-spaces, and (b) successfully navigate
in environments with non-convex obstacles.

I. INTRODUCTION

Autonomous robots are becoming increasingly common
in domestic, commercial and military settings. Such robots
must be able to quickly plan a safe route from their current
location to the goal, while still being flexible and adaptable to
unforeseeable obstacles and environmental uncertainties. De-
spite recent successes, e.g., the Mars rovers [1] and DARPA
Urban Challenge [2], on-line navigation in unknown environ-
ments remains a challenging problem. This paper presents
an autonomous waypoint generation strategy (AWGS) that
uses reinforcement learning (RL) [3] for on-line navigation
of mobile robots in unknown 2D- and 3D-environments. In
AWGS, an RL agent analyzes the local surroundings of the
robot and generates a waypoint in its field of view (FOV).
An underlying path planner (ECAN [4]) then plans a path
to reach the waypoint. One of the key insights is that the
RL agent’s MDP is formulated to be independent of the
domain and space dimensionality, allowing it to generalize
its waypoint generation policy across different environments.
This space-independence also enables planning the way-
points in 3D, using the identical computations as in 2D,
which automatically generalizes learning from 2D- to 3D-
space (and vice-versa) and makes AWGS effective for the
2D- and 3D-navigation problems.

Using waypoints or sub-goals for reliable navigation in
2D-environments has been widely discussed. Shiller [5]
proposed exit-points, fixed locations on the boundary of ob-
stacles for on-line navigation in known environments, which

Sanjeev Sharma is a graduate student in the Computing Science Dept. at
University of Alberta, Canada. sanjeevl@ualberta.ca

Matthew E. Taylor is an assistant professor in the Computer Science
Dept., Lafayette College, USA. taylorm@lafayette.edu

is restricted to 2D-space. Krogh et al. [6] presented a geo-
metrical method for selecting sub-goals corresponding to the
edge and vertices of convex polygonal obstacles in unknown
2D-environments. Thus, the approach may not be applicable
for arbitrarily shaped obstacles. Maida et al. [7] placed local
sub-goals inside a rectangular arena of fixed dimensions,
constructed around the robot, at a fixed distance from the
robot and at the intersection of line segments (forming the
path) avoiding the obstacles. The approach is thus limited
to the extraction of waypoints along the generated path (in
2D). In contrast, AWGS intelligently selects a waypoint for
the planner, which then plans a path to the waypoint, and
is thus not restricted by the abilities of a planner. Wang et
al. [8] selected midpoints between obstacles, in front of the
robot, as sub-goals in 2D-environments. A robot moving in a
3D-space may pass over an obstacle instead of searching for
an opening between obstacles. AWGS can select waypoints
to pass in between obstacles or to go over an obstacle in
3D-space. While the previous approaches are limited to 2D-
space, AWGS is applicable in both the 2D- and 3D-space.

During the last decade, sampling based planners like
RRTs [9] have been successfully demonstrated in many
robotics applications. RRT methods explore the environment
by randomly sampling it to construct trees. On-line planning
with RRTs in structured (2D-) environments (e.g., following
a road) has been addressed in [10]. The constraint that the
vehicle should follow a road effectively provides a direction
(forward) for the expansion of RRTs. In contrast, AWGS
works in unstructured (no predefined path or road), and in
both 2D- and 3D-, environments by intelligently generating
the waypoints in the FOV. Karaman et al. [11], [12] proposed
RRT* for optimal on-line path planning. However, RRT*
requires a complete map of the environment for building an
initial feasible plan to the goal (an initial tree), before the on-
line planning starts. Then during the execution of this initial
plan, a rewiring step modifies the tree (on-line) to generate an
optimal solution [11]. The requirement of an initial solution
to the goal may create difficulties in planning with zero prior
knowledge of an environment. On the other hand, AWGS
requires no prior map and assumes no information of the
environment beyond the robot’s field of view.

AWGS is applicable to many planners, however, this paper
focuses on using the ECAN planner [4] because: (i) ECAN’s
implementation is similar for both 2D- and 3D-space; (ii)
ECAN guarantees collision avoidance for non-convex shaped
robots, which makes the presentation of non-convex shaped
robots easier; and (iii) ECAN may fall into oscillations when
obstacles are non-convex, making it easier to demonstrate

UAY/UGV
navigating in Local FOV RL Agent 9
2D/3D information and |3} (Feature Space)
environment goal coordinates Decision Making

Fig. 1: AWGS uses domain and space independent RL agent for waypoint
selection. The underlying path planner used in experiments is ECAN.

that the AWGS can overcome the shortcomings of a planner!,
and is not restricted by the abilities of an underlying planner.
Also, an extension of this paper discussing the multi RL-
agents approach and the planning time is available [18].

The contribution of this paper is to present a novel for-
mulation, using RL, for waypoint generation that: (i) works
identically for both the 2D- and 3D-navigation problems; and
(i) helps improve the performance of an underlying planner.
The rest of this paper proceeds as follows: section-II presents
background; section-1I-B briefly describes ECAN; section-
IIT describes the feature space construction and the reward
function for the RL agent; and section-IV experimentally
demonstrates the properties of AWGS.

II. BACKGROUND

This section provides necessary background, describes the
notations used in this paper and presents a selection of related
work. This research assumes that the robot: (i) cannot see
beyond its field of view (FOV); and (ii) knows its coordinates
zfl at each time-step ¢, and the coordinates of the goal z,.
A point-cloud of m obstacles at time-step ¢ is represented
as O with 2,,,i = 1,...,m representing the location of i
point-obstacle in the cloud. A set of n-dimensional positive
definite symmetric matrices is denotes as S | .

A. Reinforcement Learning

The underlying reinforcement learning (RL) problem of
waypoint generation in AWGS is solved as an MDP [3]. In
RL, a state-action value function Q™(s,a) for a policy 7
predicts the long-term reward if an agent takes action a € A
in state s € S and thereafter follows policy 7 : S — A.
The agent’s probability of taking an action a in s is given by
(s, a). The agent’s task is to learn a policy 7 that maximizes
the total expected reward from any s € S, where the reward
may be discounted by a discount factor v € [0, 1]. By taking
action a in s, agent makes a transition to state s’, and receives
a reward r(s,a,s’). The value function is approximated
using a linear function approximation architecture: Q(s,a) =
#(s,a)Tw, where ¢(s,a) € R¥ is the state-action feature
vector for (s,a) and w € R¥ is learned using samples.

B. ECAN Navigation: Convex Programming Formulation

For navigation, ECAN forms a locally maximal ellipsoid
Wt around the robot while taking the layout of local obsta-
cles into account, oriented in such a way that favors progress
towards the goal. The ellipsoid is constrained: (i) to contain
the robot, (ii) to keep goal location on the boundary or

I AWGS has been implemented successfully for RRTs, A*, unconstrained
2D- and 3D-splines, and motion planning: (i) with Mixed Integer Program-
ming and (ii) of a Car Like Robot: http://www.searching-eye.com/awgs.mp4

outside, and (iii) to keep all the obstacles outside its boundary
— ensuring collision avoidance. On time-step ¢, the ellipsoid
Ut is parameterized by variables (P, ¢*,r?) and is defined
as U = {z|z" Plz+aTq'+r' <0}, where P* € ST, ¢' €
R*,z € R*,7* € R and n = 2 for 2D navigation and
n = 3 for 3D navigation. Let z € R"™ be an arbitrary
location in the space and let ¥!(2) = 2T Ptz 42T ¢! +1!. The
ellipsoid formation problem is then solved as semi-definite
programming (SDP): («, 3 are trade-off parameters and I is
the identity matrix with the same dimensionality as P?)

minimize U’ (z,) + o[P (zL)[|]2 + B, Ti(z0,)
subject to U(zl) < —1; Ul(z,) > 0; Ui(z,,) >1
Pt=1T; 2,, € 0% i={1,...,m}.

The first constraint ensures that the (point-) robot lies inside
W, the second constraint ensures that the goal lies outside
or on the boundary of Ut the third constraint ensures
that all the obstacles in the point-cloud (O%) lie outside
Wt and the positive definite constraint on P* (Pt = 1)
ensures that U’ is an ellipsoid. Objective W(z,) orients the
ellipsoid to point towards the goal; || ¥?(2!)||> checks the
ellipsoid’s unbounded growth along its principal axis [4];
and) " U'(z,,) forms a locally maximal ellipsoid, around
the robot, bounded by surrounding obstacles. If the robot is
finite (i.e., not a point mass), the first constraint is replaced
by a constraint that the convex-hull of the robot should lie
inside W*. Next, a navigation direction and a step-length
(As) are computed using the obtained ellipsoid. However, the
navigation direction is biased with the ellipsoid’s orientation
(often pointing towards the goal), potentially allowing the
agent to become trapped between non-convex obstacles [4].
Within the AWGS, z, in the SDP is replaced by the next
waypoint. Thus, instead of planning to reach the goal, ECAN
in AWGS always plans to reach the next waypoint.

C. Related Work: Reinforcement Learning

The RL agent in AWGS learns a domain and space
independent policy. The reutilization of a policy has been
widely addressed in transfer learning [13]. In this context,
state of art methods typically suffer when generalizing the
learned policy from one 2D-environment to another 2D-
environment — at least some amount of retraining in new
environment is required (see for example [14]-[17]).

III. FEATURE SPACE CONSTRUCTION

This section describes the computation of parameters
required to construct the feature space for the RL agent.
These parameters are readily available during the navigation
and are computed identically in 2D- and 3D-space. Obstacles
are represented using a potential map (one of the parameters
of feature space). The potential map helps the RL agent to
classify safe and unsafe regions for waypoints. The geometric
parameters help the RL agent to make progress towards
the goal, while ensuring safety. The RL agent’s task is
to generate a waypoint in the FOV, while taking collision
avoidance into account, so that the robot can eventually reach
the goal by following waypoints.

)

Obstacle

(a) (b)

Fig. 2: (a) shows discretized grid-points in the FOV and (b) shows the
corresponding potential map; red regions represent higher grid-point values.

The next section introduces the potential map. Then the
geometric parameters, which allow goal-directed generation
of waypoints, are discussed in section-III-B. Finally the MDP
for the RL agent is formulated in section-III-C.

A. Potential Map

A local potential map represents obstacles, for the RL
agent, in the robot’s FOV at each time-step ¢. To form the
potential map, the FOV is discretized. Using polar coordinate
system, robot’s view is restricted by (Rpgoy,0roy) in 2D-
space and by (Rrov, Orov, drov) in 3D-space. The FOV is
thus defined by (r,0) and (r,0,¢) in 2D- and 3D-space
respectively, where r € (0, Rrov], 8 € [—Orov, +0rov]
and ¢ € [—¢rov, +¢rov]- The parameters dr, df and d¢
represent discretization along the respective polar coordi-
nates. The total number of grid-points N, in the robot’s
FOV is ((29pov/d9) +].)Rpov/dT' and ((20pov/d0) +
1)((2¢rov/d¢) + 1)Rpoy/dr in 2D- and 3D-space respec-
tively. One of these grid-points is then selected as a waypoint
by the RL agent. The obstacles in the FOV are converted into
an equivalent point-cloud. When obstacles are discovered in
the FOV, then the grid-points lying on the faces/edges of
these obstacles are added to the point-cloud OY. Let there
be m point-obstacles in the point-cloud (O?). The potential
map, for each of the NV grid points, is then computed as:

(—(max {0, [llg — 2o,]2 — 5})2)

o2

V, < max exp
7:1,...m

where ¢ = {1,...,N};V, € [0,1] is the value of ¢™ grid-
point in the potential map; ¢ is the radius of the smallest
circle encircling the robot (§ = 0 for a point robot); and
l; and z,, are locations of the ¢” grid-point and the ;™
obstacle in the point-cloud, respectively. If m = 0 then
Vg = 0,Vg ={1,...,N}. Fig. 2 shows the grid-points and
corresponding potential map in 2D-space.

B. Geometric Parameters Computation: 08",p8",(

After computing the potential map, three geometric param-
eters ([0%", p%’, (;]) are computed for each of the grid-points
in the FOV. These parameters, together with the potential
map, enable environment independent generation of the
waypoints, while ensuring safety. The first two parameters
measure the progress towards the goal if the j” grid-point is
selected as the waypoint. The first parameter 9;7 € [—m, 7] is
an angle between the vectors connecting z! to z, and 2! to
the ;™ grid-point (1;). The second parameter is a normalized

. -th . . . or
distance of the j™ grid-point from the goal location, p; =

direction— / grid-point
o) -

B Obstacle 1 .
f/ gr Unknown area and/)
navigation g; - dj out of agent’s View
[8; — -
" agent goal I i= 1

Fig. 3: The left figure shows the first two geometric parameters. The right
figure shows a situation where the parameter ¢; = 1 for the grid-points
which lie above the obstacle (red-triangle) and to left of the red-line.

A8 /(2|20 = zll2), where d" = |[|zg — I;]|2 and 20 is
the robot’s location at ¢ = 0. Fig. 3 (left) depicts these
parameters. The third parameter (¢;) is a Boolean variable.
¢; = 1 if a line-segment between the ;™ grid-point and the
robot’s current location (zZ) intersects any finite obstacle;
¢; = 0 otherwise. It effectively determines the regions hidden
from the robot’s view — thus classifying the potentially
unsafe regions (Fig. 3, right). The RL agent (as discussed
in the following section) gets a large negative reward for
selecting the grid-points with {; = 1 as the waypoints.

C. Feature Space, Value Function and Reward Function

Once the parameters are computed, state-action features
are computed for the RL agent. The robot’s current location
represents state of the RL agent at time-step ¢, while an
action corresponds to selecting one of the grid-points as
the waypoint. After the waypoint is selected, it becomes
the current goal for ECAN, which then moves the robot a
certain distance As (if the environment is uncertain) or to the
waypoint (if the obstacles in the FOV are known to be static).
The entire algorithm is then iterated. The As = min(d, d2),
where §; is arbitrarily fixed and o is computed, with
constraint that the robot remains inside W, using quadratic
programming (see [4]). The robot may not actually navigate
to the location suggested by the current action (waypoint) of
the RL agent — an action may be only partially executed.
The resulting formulation may violate the Markov property,
however, it is treated here as an MDP. The state-action
feature vector corresponding to the 5 grid-point is computed
as: @5 = [1,25(p%), cos (85) exp(—p), Vi, G517, where
S(zx) represents the sigmoid function of x € R. The RL
agent’s policy is then learned using reinforcement learning
(sarsa), with an appropriate reward function.

Reward Function: The reward function is designed such
that it penalizes the RL agent for generating the waypoints
in obstructed regions of the FOV ((; = 1) or close to the
boundary of obstacles (measured by the grid-point’s value
in the potential map). If the RL agent selects the goal
location z, as the waypoint, it gets a large positive reward.
For selecting the j” grid-point as the waypoint, RL agent
receives a reward:

r=—10%¢; — a1V, + max{a500, —5}.

ag = 1 if the waypoint is defined at the goal z,, and —1
otherwise. The max function respectively returns 4500 when
the waypoint is at the goal and —5 otherwise, encouraging
the RL agent to reach the goal in minimum possible waypoint
iterations?. cv; is a constant that controls penalty for defining
waypoints close to obstacles.

2We use number of waypoint iterations (or simply, iterations) in our
experiments to measure the performance of a policy.

Y-Axis 1 7

SIDE VIEW T

1
TOP.VIEW 'ty

[3 05 >
. % .
-0§ -0.5

Center = (0,0,0)

-05 0 05 1 1 05 0o 05 1

0.6 units

Center X-Axis]

0.8 units .
uGv -t

1 1
FRONT VIEW Tz ZT REAR VIEW
05 05

y y

UAV

(a) (b)

Fig. 4: Finite robot models: (a) upper- UGV with z-axis as the direction of
motion; lower- UAV; (b) dimensions of UAV with the help of grid markings.

IV. EXPERIMENTS

AWGS is evaluated with three categories of experiments
showing: (i) domain, robot, and space independent way-
point generation; (ii) a comparison of the performance of
optimal policies with RRTs and A*; and (iii) the planning
capabilities in unknown complex 2D- and 3D-space. The
finite robot models used in the experiments are depicted in
Fig. 4. The default values of parameters are: (1,a1) =
<1, 200>, <Rpov, d’f‘, d)pov, d(b, O'2> = <5, 02, 4007 20, 05>,
(OFov, df) = (60°,1°) for 2D and (40°,2°) for 3D; («, 8) =
(0.1,5%107%) in 2D and (0.1, 10~%) in 3D (trade-off param-
eters in the SDP in ECAN); and learning rate in SARSA [3]
is 0.01 with discount factor 0.9. A* was implemented in 2D
domains by discretizing the domains in 500 x 500 grid-cells.

A. Robot-Model Independence and Policy Evaluation

These experiments show that the RL agent’s policy is
independent of the specific robot model, e.g., dimensionally
different robots and FOV. The RL agent is first trained for
a point-robot with default FOV parameters. 120 training
episodes in the domain of Fig. 7a are used with 50 to
400 random point obstacles. An episode ends when the
robot reaches the goal, or the number of waypoint iterations
exceeds 200. This policy is then used as an initial policy
while training the RL agent on a (2D-) finite robot (Fig. 4,
UGV) with 0rgy = 80°. Also, the RL agent learns a new
policy for the finite robot from scratch. After every 5 training
episodes, both policies are tested in the domain shown in
Fig. 7a, with 100 random point obstacles, in 10 different
start-goal configurations. In this experiment, obstacles in
the FOV are assumed to be static — once the RL agent
generates a waypoint, robot reaches it using ECAN, and
then the next waypoint is generated. Fig. 5a — 5c show the
planning results when learning with point-robot’s policy as
the initial policy (transfer) and when learning from scratch.
Navigation to the goal is considered successful if the robot
reaches it without colliding with any obstacle and using at
most 200 waypoint iterations. If the robot collides with an
obstacle, the path-length for that navigation problem is set
to 500 and number of iterations is set to 200. Fig. 5a shows
the average path-length, averaged over 10 start-goal con-
figurations. Fig. 5b shows the average number of waypoint
iterations required to reach the goal and Fig. 5c shows the
probability of success, after every 5 training episodes, in 10

different start-goal configurations (i.e., this graph displays
the number of experiments in which the robot reached the
goal without collision and without violating the 200 iterations
limit). These experiments show that the RL agent’s policy is
independent of the robot-model and FOV — re-learning for
the finite-robot with the point-robot’s policy (transfer) does
not show any improvement. Additionally, the performance
of learning from scratch converges to the performance of the
point-robot’s policy, requiring at least 100 training episodes.

To evaluate the performance of RL agent’s optimal policy
learned in this domain, the average path-length, over 10 start-
goal configurations, produced by RRTs and A* are shown in
Fig. 5a. In each of the 10 start-goal configurations, RRTs
were run 50 times with 10° RRT-iterations in each run,
producing trees with an average of 75000 edges, in each of
the 10 configurations. As shown, the average path-length in
10 start-goal configurations is smaller for AWGS which plans
in unknown environments, as compared to RRTs exploring
the entire environment. However, the paths are longer than
the global A* search. Average path-length in each of the 10
configurations is also shown in Fig. 6 (left).

B. Domain Independence and Policy Evaluation

Navigation in unknown environments requires the MDP
to be domain independent. Experiments in this section show
that the RL agent learns a domain-independent policy to
generate waypoints. Since the RL agent’s policy is robot-
independent, the point-robot’s policy learned for the domain
in Fig. 7a is used as an initial policy for re-learning (transfer)
in the domain of Fig. 7b, for the finite-robot. Also, a new
policy is learned from scratch in this domain to compare how
well the transferred policy performs in this new domain. The
environment is again assumed static — the next waypoint
is generated only when robot reaches the current waypoint,
using ECAN. Fig. 5d — 5f compare the performance of learn-
ing with transfer and learning from scratch. Both policies are
tested after every 5 training episodes, in 15 different start-
goal configurations. The policy learned for the domain in
Fig. 7a performs optimally in the new domain with non-
convex obstacles even without any training. The new policy
learned from scratch takes 100 training episodes for a similar
performance, and converges to that performance — showing
that the initial transfer policy is optimal. Thus, learning is
domain-independent — enabling AWGS to plan in unknown
environments.

Again the performance of transferred policy (which is
optimal for the RL agent) is evaluated with RRTs and A*.
Fig. 5d shows the average path-length over 15 start-goal
configurations for RRTs and A*. Again the AWGS produces
shorter paths as compared to RRTs but longer than A*.
Also, the length of the paths produced by AWGS, RRTs
and A* in each of the 15 configurations is shown in Fig. 6
(right). The average for RRTs was again taken over 50
trials in each configuration, with 10°> RRT-iterations in each
trial, producing trees with an average of 68550 edges in
each configuration. The paths produced by AWGS are again
shorter than RRTs (for all but one configuration) even when

—%— Transfer|

W sa
S 29
[SIR=R=]

N
o
S}

=
o
S

Average lterations

=
o
S)

Average Path Length

k1

*
3H
*H
*
X
3
3H
2
3
3H
*H
2
*
3

-

—%— Transfer
—*— Scratch

o
®

=4
> o

—#— Success Probability: Transfer|

o
N

Success Probability

s

—O— Success Probability: Scratch | 7

s ¥

20 40 60 80
Training with Finite—Robot with larger FOV: # of Episodes

(a)

.
=3

20

500

Training with Finite—Robot with larger FOV: # of Episodes

(b)

o

80 10(20 40 80
Training with Finite—Robot with larger FOV: # of Episodes

(©)

10

—%— AWGS: Transfer|
—©— AWGS: Scratch
—A—RRT

A*

400+
300

200

100

Average Iterations

=

Average Path Length

Au/a\n_x 4

e e

o
o =

—¥— Transfer
—*— Scratch 7

o o
> o

o
o

Success Probability

Y

Y

—%— Transfer| |
—%— Scratch
Y v A 4 L L L

40 60 80
Training in target domain: # of Episodes

20 10(

20

40
Training in target domain: # of Episodes

(O]

=)

.
40 60
Training in target domain: # of Episodes

()

60 80 10(20 80 10(

N
o
S

()
‘ ‘ —%— Transfer
—%— Scratch

B
o a
S o

a
<)

Average Path Length
Average lterations

AAAAAd

—¥— lterations: Transfer| AAA A
—%— lterations: Scratch |

0.5

Success Prob.

—7— Success Probability: Learning with Transfer|
—%— Success Probability: Learning from Scratch

50 100 150
Training in 3D-Space: # of Episodes

(2)

200 50

100
Training in 3D-Space: # of Episodes

()

50 100 150
Training in 3D-Space: # of Episodes

@

150 200

Fig. 5: a—c empirically show that 1) the RL agent’s policy is robot-model independent and can be reused for dimensionally different robots and FOV, and
2) the learned policy produces paths shorter than RRTs and longer than A*. d—f show that the RL agent performs optimally in novel domain without any
retraining and that the performance remains constant during additional training. The learned policy again produces shorter paths than RRTs, but produces
longer path than A*. g-i show that 1) the 2D-space policy performs optimally in 3D-space even with no training in 3D and 2) learning from scratch

converges to the same performance.

—+— AWGS —A— RRT

W\/\

2

A

©
8

Path Length
@
3
Path Length

3

1 9 1 2

4 5 6 7 6 8 10
(Start,Goal) Configuration (Start,Goal) Configuration

Fig. 6: Comparison of average path-length produced by RRTs, AWGS and
A* in each of the 10 and 15 configurations in convex (left) and non-convex
(right) domains respectively.

planning in unknown environment, while RRTs explore the
entire environment.

C. Space Independence

This section experimentally shows that the RL agent’s
MBDP is independent of the space-dimensionality, e.g., train-
ing in 2D-space and planning in 3D-space without training
from 3D-samples. As in previous experiments, two policies
are learned: (i) transfer-policy: learning with 3D-samples
using the 2D-space policy as an initial policy and (ii)
scratch-policy: learning from scratch with 3D-samples, for
the UAV (Fig. 4). Since the RL agent’s policy is environment
independent, the test and the training environments are the
same. Episodes are defined in the same way as in previous
two experiments. After every 5 training episodes, both the
policies are tested in the domain shown in Fig. 8, with
15 different start-goal configurations and with 100 random
point obstacles. The 2D-space policy was learned in Fig. 7b
domain for 200-episodes, with 50 to 1000 random point
obstacles. As shown in Fig. 5g — 5i, the transfer-policy per-
forms optimally without any 3D training, while the scratch-
policy requires 20-episodes to start reaching the goal (Fig. 51)
and at least 210-episodes to approximate the performance
of transfer-policy. Additional training after transfer does

not improve the policy’s performance. The performance of
learning from scratch again converges to the performance of
transfer — the initial 2D-space policy performs optimally.

D. Planning in 2D: Convex and Non-Convex Obstacles

This section shows sample planning results and compares
the performance of AWGS (using ECAN as planner) with
ECAN to show that AWGS can overcome the shortcom-
ings of a planner. Fig. 7a shows the sample trajectories
planned on-line by AWGS, with finite-robot and with As =
min(dy,d2)3, in a cluttered environment with convex obsta-
cles and 401 random point obstacles. The robot’s FOV is
also shown for comparison. AWGS successfully navigates
the robot to the goal(s), with RL agent defining the way-
points and convex constraints in ECAN ensuring collision
avoidance for the finite-robot. Fig. 7b shows navigation with
AWGS in a domain cluttered with non-convex obstacles.
AWGS successfully avoids the traps in between the obstacles.

Both AWGS and ECAN alone were tested in 100 different
start-goal configurations in Fig. 7b. AWGS successfully
reached the goal in all runs, while ECAN failed to reach the
goal because the ellipsoid always points towards the goal
and the robot gets trapped in the concavity of obstacles.
These experiments show that AWGS can successfully plan
in unknown environments cluttered with convex or non-
convex obstacles even when underlying planner is prone to
local oscillations among non-convex obstacles. Also, AWGS
avoids getting trapped in the concavity of obstacles even
when the potential map, one of the features in the RL agent’s

30nce the waypoint is selected by the RL agent, ECAN plans the path to
navigate the robot by a distance As and then a new waypoint is generated.

* Start
* Goal A
Point Obst. MR

o,

(@ (b)

Vel —

(©

Fig. 7: (a) Sample trajectories to 4 different goals with finite robot model, (b) planning in unknown environment cluttered with non-convex obstacles;
robot’s FOV also shown for comparison, and (c) UAV navigating in between convex obstacles (left) and a zoomed figure (right), depicting UAV clearly.

Fig. 8: Showing sample trajectories (left) planned in 3D environment with
convex and non-convex obstacles along with projection on z-y (right) plane.

state-action feature vector, may succumb to local minima.
The geometric parameters help in goal-directed selection of
the waypoints and avoid these local minima.

E. 3D-Space Planning

This section shows successful planning with AWGS
(As = min(dy,d2)) in unknown 3D-spaces, in the presence
of both convex and non-convex obstacles. Fig. 7c shows on-
line planning for the UAV — the FOV parameters were
again set to defaults. AWGS successfully avoids collision
and plans directly with finite size UAV in 3D-space cluttered
with convex obstacles. Fig. 8 shows sample planning results
with AWGS in an environment cluttered with both convex
and non-convex 3D-obstacles.

Again, both AWGS and ECAN alone were tested in 100
different start-goal configurations in Fig. 8 domain. AWGS
successfully reached the goal in all 100 test cases, while
ECAN only succeeded in 36 test cases. ECAN easily gets
trapped in between the two non-convex obstacles, while
AWGS, due to waypoints, easily avoids getting trapped in
between the non-convex obstacles.

V. CONCLUSION, DISCUSSION AND FUTURE WORK

This paper presented a novel waypoint generation strat-
egy that facilitates navigation in unknown 2D- and 3D-
space. While the existing randomized planners plan once
the configuration of obstacles in the environment is known,
AWGS on the other hand requires no environment specific
information beyond the robot’s FOV and produces relatively
shorter paths. The waypoint generation is independent of
the robot models and space-dimensionality. This makes it
possible to learn the RL agent’s policy for any kind of robot

model and in either 2D- or 3D-space. Future work (i) will
present on-line non-holonomic motion planning in unknown
environments with AWGS, and (ii) involves implementation
of the AWGS on a quad-rotor flying robot and analysis of
the performance with noisy robot’s coordinate detection.

An implementation of AWGS in Python will be made
available at: http://www.searching-eye.com/awsf/

REFERENCES

[1] K.L. Wagstaff, “Smart Robots on Mars: Deciding Where to Go and
‘What to See”, in Juniata Voices, vol. 9, 2009.

[2] S. Thurn, “Why we compete in DARPA’s Urban Challenge au-
tonomous robot race”, in Communications of the ACM, 2007.

[3] R. Sutton and A. Barto, Reinforcement Learning: An Introduction,
MIT Press, 1998.

[4] S. Sharma, “QCQP-Tunneling: Ellipsoidal Constrained Agent Naviga-
tion”, in IASTED International Conference on Robotics, 2011.

[5] Z. Shiller, “Online Suboptimal Obstacle Avoidance”, in IJRR, 19(5),
480-497, 2000.

[6] B. H. Krogh and D. Feng, “Dynamic Generation of Subgoals for
Autonomous Mobile Robots Using Local Feedback Information”, in
IEEE Transactions on Automatic Control, 34(5), 483-493, 1989.

[7]1 A.S. Maida, S. Golconda, P. Mejia, A. Lakhotia and C. Cavanaugh,
“Subgoal-based local navigation and obstacle avoidance using a grid-
distance field”, in Int’ Journal of Vehicle Autonomous Systems, 2006.

[8] D. Wang, D. K. Lit, N. M. Kwok and K. J. Waldron, “A Subgoal-
Guided Force Field Method for Robot Navigation”, in Int’ Conf. on
Mechatronics and Embedded Systems and Applications, 2008.

[9] S.M. LaValle and J.J. Kuffner, “Randomized Kinodynamic Planning”,
in IJRR, 20(5), 378-400, 2001.

[10] Y. Kuwata, G. Fiore, J. Teo, E. Frazzoli and J.P. How, “Motion
Planning for Urban Driving using RRT”, in ICRA, 2008.

[11] S. Karaman and E. Frazzoli, “Incremental Sampling-based Algorithms
for Optimal Motion Planning”, in RSS, 2010.

[12] S.Karaman, M.R. Walter, A. Perez, E. Frazzoli and S. Teller, “Anytime
Motion Planning using the RRT*”, in /CRA, 2011.

[13] M.E. Taylor and P. Stone, “Transfer Learning for Reinforcement
Learning Domains: A Survey”, in JMLR, 10(1), 1633-1685, 2009.

[14] K. Ferguson and S. Mahadevan, “Proto-Transfer Learning in Markov
Decision Process using Spectral Methods”, in ICML Workshop on
Transfer Learning, 2006.

[15] L. Frommberger, “Generalization and Transfer Learning in Noise-
Affected Robot Navigation Tasks”, in Artificial Intelligence: EPIA
Lecture Notes in Computer Science, 308-519, 2007.

[16] L. Frommberger, “A Generalizing Spatial Representation for Robot
Navigation with Reinforcement Learning”, in FLAIRS, 2007.

[17] L. Frommberger and D. Wolter, “Structural Knowledge Transfer by
Spatial Abstraction for Reinforcement Learning Agents”, in Adaptive
Behavior, 18(6), 507-525, 2010.

[18] S. Sharma and M.E. Taylor, “Autonomous Waypoint Selection for
Navigation and Path Planning: A Navigation Framework for Multiple
Planning Algorithms”, Technical Report, 2012. http://www.searching-
eye.com/awsf/awsf.pdf

