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Reinforcement learning (RL) algorithms have shown great promise in controlling building systems to
minimize energy use, operational cost, and occupant discomfort. RL agents learn a control policy by inter-
acting with the physical or simulated environment that represents building systems, occupants, and the
outside world. Yet, a large amount of data is needed to learn a near-optimal control policy in the physical
building, which requires months or years to collect. Moreover, an agent’s performance while training can
be quite poor, causing occupant discomfort and additional costs. Learning in simulation does not have
such real-world impacts, but differences between buildings, and indeed between simulation and physical
buildings, potentially lead to poor performance when a policy learned in simulation is deployed in a
physical building. This paper addresses part of the sim-to-real problem by training on one set of simu-
lated (source) buildings and then deploying to a novel simulated (target) building. This approach signif-
icantly reduces the training cost of RL on the target building by 1) learning a large number of policies on
prototype buildings, 2) evaluating these policies on historical data obtained from the target building’s
environment and selecting the best ones according to the evaluation result, and 3) using the best policies
to control the target building while continuing to learn. The proposed approach involves learning a
diverse population of control policies using a novel diversity-induced RL algorithm, and policy clustering,
evaluation, and selection techniques. Three case studies show our approach assigns policies to the target
building that outperform the default controller by 4.0–30.4%, without sacrificing thermal comfort.
Similarly, they outperform policies that are learned only on the target building (i.e., without transfer)
by 24.9–74.9% and 16.2–72.2% before and after 500 months of training, respectively.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction particular Heating, Ventilation and Air Conditioning (HVAC) con-
Safe and optimal control of buildings has received increasing
attention in the past few decades due to two main reasons. First,
building operation and construction are responsible for almost
one-third of total global final energy consumption and 15% of
direct carbon emissions [1]. Second, people spend around 90% of
their time indoors [2], hence their health and well-being largely
depend on the operation and Indoor Environmental Quality (IEQ)
performance of buildings. Despite the growing adoption of sensors
and monitoring systems in buildings, controls are still simple, reac-
tive, and must be customized for every building based on its type,
floor plan, and occupancy schedule. Existing building controls — in
trol systems — do not take full advantage of time-series emitted
by the sensors and fail to strike a balance between energy use
and IEQ factors, such as thermal comfort [3]. As a result, buildings
are not as comfortable as they could be, consume a significant
amount of energy, and produce excessive carbon emissions.

Many efforts have been made to date to make building controls
proactive and adaptive to occupant and grid needs. Specifically, a
wide range of model-based, data-driven, and learning-based con-
trol strategies have been proposed in the literature [4,5], yet none
of these strategies can be applied to all types of buildings in the
building stock. Model Predictive Controls (MPC) are not widely
adopted because accurate weather and thermal models, and occu-
pancy schedules are not readily available for many buildings.
Although these models may be available for select buildings, they
cannot be used to control other buildings due to the diversity in
building design and construction. Identifying these models using
data collected from the building and its environment has its own
challenges (e.g., lack of sufficient excitation [6]), and does not work
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for newly constructed buildings where trend or log data is scant.
Learning-based controls, such as policies learned by interacting
with the building systems via a Reinforcement Learning (RL) algo-
rithm, require less customization in general, but they perform
poorly in the early stage of training when the decision-making
agent is exploring a large state-action space. Previous work shows
that learning a reasonable, near-optimal policy for a complex
multi-zone building may take several weeks or even months
[7,8]. While the policy can be learned by interacting with a simu-
lated building (e.g., the digital twin of the building) to reduce the
high-qualitytraining cost, it requires prior knowledge of the build-
ing model, suffering from the same scalability issue as MPC. If the
policy is learned in the physical building, its sub-optimal operation
in the early stage of training can be overly costly and its low IEQ
performance may cause excessive discomfort for the occupants.
This is one of the primary adoption barriers of RL-based controls.

In this paper, we investigate how to mitigate this key adoption
barrier. The first step is to build a library of control policies, each
trained on a real or simulated building, using environment and pol-
icy diversity [9]. We observe that some policies in the policy library
when transferred to a novel environment, i.e., a thermal zone in the
target building, perform markedly better than policies that have
been trained on that building for several months. To efficiently
identify these policies, we borrow ideas from Neural Architecture
Search (NAS) and Off-Policy Policy Evaluation (OPE) to evaluate
the policies in the policy library using a small batch of log data
(e.g., just a few weeks worth of data) from the target building.
The log data is collected while the target building is controlled by
a default controller, e.g., a rule-based or reactive controller. We
show that the proposed policy evaluation approach gives us a reli-
able estimate of how these policies might perform on the target
building, thereby enabling us to assign a subset of them to zones
in that building. Our approach entails policy clustering, selective
ranking, and eventually transferring the best policies to respective
zones in the target building. Our contribution is threefold:

� We build a library of RL-based HVAC control policies using a
diversity-induced policy gradient method with an augmented
loss function. These policies are learned through interaction
with a prototype office building.

� We propose a novel two-step method that combines policy
clustering and evaluation, and uses the resulting ranking to effi-
ciently identify high-quality policies for the target building
among policies in the policy library. This method requires just
two weeks of log data collected from the target building.

� Using three buildings in different climates, we evaluate the effi-
cacy of the proposed policy selection and evaluation technique
in identifying high-quality policies that, when transferred to a
novel building, outperform the default rule-based or reactive
controller, even without retraining.

The rest of this paper is organized as follows. We introduce the Mar-
kov decision process, a sample-efficient policy gradient RL algo-
rithm, and two kinds of diversity in Section 2, and discuss
different approaches to policy evaluation in Section 3. We formulate
the control problem in Section 4 and present our methodology in
Section 5. The source and target buildings are described in Section 6
and our experiment results are discussed in Section 7. We review
the related work on HVAC control including RL-based control tech-
niques in Section 9, and conclude the paper in Section 10.
2. Reinforcement learning

Reinforcement learning (RL) [10] is a learning framework that
allows agents to optimize their behavior in an environment
2

through trial and error. It is formulated in terms of a Markov deci-
sion process (MDP) which is defined as a tuple S;A; T ;R; cð Þ,
where S represents the set of states the agent could be in, A repre-
sents the set of all actions the agent can take in the environment,
T : S �A# S is the stochastic transition function, R : S �A# R

is the reward function, and c 2 0;1½ � is the discount rate. The goal
of an agent is to learn a (stochastic) policy p, which maps the state
to a probability distribution over actions, helping the agent choose
the action that maximizes its return. The return is defined as the
discounted reward of the agent Gt ¼

P1
k¼0ckrtþk.

Proximal Policy Optimization (PPO). PPO is a model-free pol-
icy gradient RL algorithm [11]. It is based on the actor-critic archi-
tecture which is suitable for continuous control problems. PPO is
shown to be effective in numerous RL tasks [12]. This is partly
due to the fact that it employs a clipping mechanism that restricts
the updates of the policy to a trust region, and that it performs
multiple epochs of updates per each sample. The loss of PPO is
given by:

LPPO¼: bE min q st; atð ÞbAt; clip q st ; atð Þ;1� �;1þ �ð ÞbAt

� �h i
; ð1Þ

where bAt is the estimated advantage at time t, q st ; atð Þ is the
ratio of the probability under the new and old policies respectively,
and clip projects this probability ratio onto 1� �;1þ �½ � so it can-
not be too far away from 1. The advantage estimate can be calcu-

lated from bAt¼
: G0pold

t � Vpold stð Þ, where G0pold
t is the discounted

reward starting from st and running pold for a fixed number of
timesteps, and Vpold is the state-value function under pold. The ratio
q s; að Þ is defined as p at jstð Þ

pold at jstð Þ with p being the learning policy and pold

representing the old policy. Finally, � is the hyperparameter con-
trolling the size of the updates by constraining them to a trust
region as stated earlier.

Diversity-Induced Reinforcement Learning. The optimal pol-
icy learned through a series of interactions with a given environ-
ment may perform poorly in a novel environment. To improve
generalization, diversity-induced RL algorithms attempt to find a
large number of near-optimal, yet diverse policies on the training
environment [13]. To enforce diversity, one approach is to modify
the reward function such that diversity is encouraged during train-
ing [14]. This is referred to as policy diversity. Another approach is
to train a policy on various environments [15], which is known as
environment diversity.

3. Policy evaluation methods

The previous section discussed how reinforcement learning can
be used to train a policy by interacting with the environment. This
section discusses how a policy could be evaluated from environ-
mental data captured by another policy. For example, a learned
policy could be evaluated from data collected while a rule-based
controler was interacting with an environment.

3.1. Off-policy policy evaluation

Off-policy Policy Evaluation (OPE) concerns estimating the per-
formance of a given decision-making policy, known as the evalua-
tion policy, using historical data that may have been generated by a
different behavior policy (e.g., a proportional controller). We denote
the historical data as D ¼ st ; at ; rtð Þnt¼1

� �
where st ; at , and rt are

respectively the state, action taken, and reward received from the
environment at t. The most popular OPE methods are based on
importance sampling, examples of which are inverse probability
weighting (IPW) [16] and self-normalized inverse probability
weighting (SNIPW) [17]. In general, SNIPW is shown to be more
stable in certain tasks as its value is bounded by the support of
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the rewards and its variance is smaller than IPW [18]. Given the
evaluation policy pe and the behavior policy pb that was used to
generate the historical data, the value of pe (i.e., the expected
cumulative reward available from each state–action pair) under
IPW and SNIPW is defined as follows:

bV IPW pe;Dð Þ¼: 1
n

Xn

t¼1

q st ; atð Þrt ;

bV SNIPW pe;Dð Þ¼:

Xn
t¼1

q st ;atð Þrt

Xn
t¼1

q st ;atð Þ

;

where q s; að Þ¼: pe ajsð Þ
pb ajsð Þ is the importance sample ratio, D denotes the

offline dataset from which the trajectory was sampled, and st; at

and rt respectively represent the state, action taken, and reward
received at time step t. The above-mentioned OPE methods assume
that actions are discrete, and use rejection sampling to filter the
dataset. However, this approach cannot be extended to work with
continuous actions as rejection sampling does not work in the con-
tinuous setting [19]. To overcome this limitation, Kallus et al. [19]
employ kernel density estimation to calculate the value of a policy,
which is given by:

bV Kernel pe;Dð Þ¼: E 1
h
K

argmaxat 0pe at 0jstð Þ � at
h

� �
rt

pb at jstð Þ

� 	
:

Here K is the kernel function, such as the Gaussian kernel, and h is
the bandwidth which is a hyperparameter. When a Gaussian kernel
is adopted, we refer to this method as GK.

In this paper we investigate the use of three OPE methods,
namely IPW, SNIPW, and GK, in the building control domain to
evaluate policies in the policy library using log data generated by
a default controller in the target building. To our knowledge, this
is the first time that the OPE methods are used for policy evalua-
tion and transfer learning in buildings.

3.2. Proxy-based policy evaluation

Neural Architecture Search (NAS) has become the standard
technique in deep learning to discover the best neural networks
among a set of candidate architectures for a given supervised
learning task. Since the search space of neural architectures can
be extremely large, one cannot possibly evaluate the performance
of all architectures. Thus, it is important to devise efficient explo-
ration and lightweight evaluation techniques [20]. Efforts have
been made to identify low-cost or zero-cost proxy (ZCP) [21,22]
tasks to rank neural networks at initialization (i.e., before training).
In gradient-based approaches, a mini-batch of data is used to cal-
culate the gradient of loss for each layer. These gradients are then
used to rank neural networks. Gradient-based approaches differ in
how the gradients are aggregated but all use the aggregate as a
heuristic to predict how the neural network would perform in a
task.

Lee et al. [22] introduces a saliency metric, called SNIP, that
approximates the change in loss when a connection is removed.
This helps identify connections in the network that are important
to the given task before training the network, using a mini-batch
of data. While SNIP was originally proposed for network pruning,
it can be used as a proxy for NAS, based on the observation that
a neural network that attains a higher SNIP will perform better
in the given task [21]. SNIP is defined as

SSNIP¼:
@L
@h

� h





 



;

3

where L is the loss function of the neural network with parameters
h, and � denotes the Hadamard product. Abdelfattah et al. [21]
empirically evaluate various ZCP metrics to compare their efficiency
in ranking neural networks. They also propose a new metric, called
gradnorm (GN), which can be used for NAS, and is defined as the
sum of the Euclidean norm of the gradients after back-
propagating the loss computed from a mini-batch of data.

4. Zero-cost proxies for RL

We consider an HVAC system that consists of one or multiple air
handling units (AHUs) and variable air volume (VAV) systems as
depicted in Fig. 1. The optimal HVAC control can be cast as a
sequential decision making problem where an agent interacts with
the building to control various knobs (e.g., actuators in the VAV
systems) and receives a reward in return, which is used to learn
the control policy. While a single agent can control the entire
building (all actuators in AHUs and VAV systems), it prevents the
policy from being transferred to a new building that has a different
state-action space, e.g., contains more VAV systems. We frame the
HVAC control problem in a MARL setting where each agent is
responsible for controlling a single zone; a building is controlled
by several independent agents, each acting in their respective zone.
Our multi-agent MDP is a tuple N;S;Ai;i2 1;...;Nf g;Ri;i2 1;...;Nf g; T ;H

� �
where.

� N represents the number of agents;
� S represents the state space observed by all the agents. In our
formulation, each agent receives readings of 6 physical or vir-
tual sensors, namely mean temperature (�C), mean humidity
(%), outdoor temperature (�C), solar irradiation (W), binary
occupancy state, and hour of the day (0� 23);

� Ai denotes the action space for agent i. We define the action of
each agent as setting the minimum position of the damper in
their VAV system. The minimum damper position is a value in
0:1;1½ �, where 0 indicates that the damper is closed and 1 indi-
cates that the damper is fully opened. For example, if the agent
assigns 0:2 to the minimum damper position, the damper can
be opened between 20% and 100%. The AHU control points
and all other VAV control points are adjusted by the controller
in EnergyPlus, using the predictive system energy balance
method [23]. This controller makes sure the thermal comfort
requirement is satisfied in each zone by adjusting the supply
air temperature and/or the reheat coil power. The RL agents
do not interfere with this process;

� Ri is the scalar reward received by agent iwhen it takes action a
that causes a state transition from s to s0. To incentivize the
agents to minimize the HVAC energy consumption, we define
the reward of each agent as the energy consumption of the
respective VAV system with a negative sign;

� T is the transition function that defines the transition probabil-
ity from state s to state s0. EnergyPlus [23] defines this transition
function;

� H denotes the length of each episode. Even though agents con-
tinuously control the VAV systems, we model the control prob-
lem as an episodic task so that we can evaluate the policies over
a fixed period of time. Specifically, we use one winter month
with 15-min time steps to create an episode.

Table 1 lists all the state features and the action for each agent.
In MARL, each agent aims to learn a policy pi that maximizes the
expected discounted return Gi, given by

Gi¼: E
XH
t¼0

ctRi st ; argmaxat2Ai
pi at jstð Þ

� �" #
: ð2Þ



Fig. 1. Illustration of an air loop in a multi-zone building equipped with a forced-air
heating and cooling system.

Table 1
State variables and the action of each agent.

State Zone mean temperature �C
Zone mean humidity %

Zone occupancy Binary
Outdoor temperature �C
Solar radiation W
Hour of the day Integer

Action VAV minimum damper position %
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In our setting, we set c ¼ 1 since the length of each episode is finite.
Since agents have different rewards, this is a competitive MARL set-
ting. Although this formulation might increase the convergence
time, it makes it possible to separately train these agents and trans-
fer a subset of them to another building. We believe this outweighs
the drawback of slower convergence.

5. Methodology

We propose a warm-start solution for MARL-based control of
the HVAC system that requires only a small amount of historical
data collected from the target building. Our methodology has three
main parts: 1) building a library of diverse policies, 2) policy selection
based on ranking results, and 3) policy transfer and retraining. We
first explain how to learn many diverse policies to control the
HVAC system of a source building. These policies comprise the pol-
icy library. We then use a clustering algorithm and various policy
evaluation methods to efficiently identify the most suitable poli-
cies for controlling the target building using the historical data.
After these policies are assigned to the respective zones in the tar-
get building to control VAV systems, we retrain them on the target
building in an online fashion. The overall workflow is illustrated in
Fig. 2.

5.1. Building the policy library

To improve generalization of RL agents that control VAV sys-
tems located in individual zones of a building, we build a policy
library by taking advantage of both policy diversity and environ-
ment diversity, which are defined below. The resulting library
includes optimal and near-optimal policies found for a medium
office (prototype) building, which is our training environment
(aka source building). Since we do not know a priori which of these
near-optimal policies could perform better when transferred to a
novel target building, we generate a large number of diverse poli-
cies to cover a large area of the policy space.

5.1.1. Policy diversity
We augment the loss function of PPO with a diversity loss term,

denoted Ldiversity, as shown below:

Laugmented ¼ LPPO þwLdiversity; ð3Þ
4

where LPPO is defined in Eq. (1) and w is a hyperparameter that
yields a trade-off between reward optimality and policy diversity.
When w is zero, we will find the optimal policy, and when it is
non-zero, we will find a near-optimal policy that is distinct from
the previously learned policies. We define Ldiversity as follows:

Ldiversity ¼ �

X
p02Plearned

X
s;að Þ2exp

max max p ajsð Þ;p0 ajsð Þð Þ
min p ajsð Þ;p0 ajsð Þð Þ;�q

� �
Gexp sð Þ�Vp0 sð Þj j

jPlearnedj
; ð4Þ

where p is the behavior policy we are updating, �q is the upper
bound on the probability ratio, exp is the state–action tuples gen-
erated by the behavior policy in the current episode and stored
in the replay buffer, Gexp sð Þ is the cumulative reward of this trajec-
tory starting from the state s, Vp0 sð Þ is the estimated state value of
state s under a previously learned policy, andPlearned is a set of pre-
viously learned policies from which the behavior policy should dif-
fer. According to these definitions, jGexp sð Þ � Vp0 sð Þj represents the
estimation bias of a learned policy given the current trajectory.
The estimation bias is high when the previously learned policy p0
disagrees with the experience gained under the behavior policy.
The probability ratio, i.e., max p ajsð Þ;p0 ajsð Þð Þ

min p ajsð Þ;p0 ajsð Þð Þ, measures the differences

between the behavior policy p and a previously learned policy
p0. Thus, Ldiversity will be smaller (i.e., the behavior policy is consid-
ered more distinct from the learned policies) when the behavior
policy estimates the action probabilities differently from the set
of policies learned so far and state value estimates are reliable as
the learned policies agree with the behavior policy.Note that we
encourage policy diversity using a different approach than the pop-
ulation diversity introduced in [14]. The diversity loss term we
added to PPO’s loss function was originally proposed in our prior
work [9]. We slightly change its definition here to ensure that
the action probability ratio is bounded at all times. This is achieved
by clipping the probability ratio at �q.
5.1.2. Environment diversity
Adding small perturbations to the training environment can

improve generalization of RL algorithms [15]. We incorporate envi-
ronment diversity by installing blinds to cover all windows in the
training environment. This technically adds a new training envi-
ronment. Furthermore, we update the occupancy pattern of each
zone to remove the time intervals when a zone becomes unoccu-
pied (e.g., lunchtime) during core business hours. This gives two
more training environments, bringing the number of training envi-
ronments to four. Diverse policies are learned by interacting with
these four environments.
5.2. Policy selection

Once the policy library is constructed, we can assign policies
from this library to the zones in the target building. One way to
do this is to estimate the performance of each policy in the target
environment using a small amount of historical data collected from
the target environment under some behavior policy, e.g., the exist-
ing rule-based controller. But since the size of the policy library can
be quite large, it is costly to estimate the performance of every pol-
icy. To address this problem, we propose a policy clustering
method that groups similar policies in the library. We can then
sample a few policies from each cluster and evaluate their perfor-
mance using the policy evaluationmethods discussed in Section 3.1
and 3.2. This allows us to approximate the performance of other
policies that belong to the same cluster. We describe these steps
below.



Fig. 2. Schematic overview of the proposed methodology where circled numbers show different steps of the methodology.
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5.2.1. Policy representation and clustering
The next step is to identify policies that might have similar per-

formance in the given task. Since we do not know the performance
of each policy in the target environment, we cluster policies
according to their behavior in the training environment(s). We rep-
resent each policy in the policy library using a feature vector of
length m. This vector is constructed by sampling m� 1 states from
the distribution of states visited when the policy was being learned
in the training environment, and appending the initial state of the
target environment. We then use the actions that would be taken
from these m states under this policy to obtain the feature vector
of length m. We set m to 10 in this study. Given the policy repre-
sentation in an m dimensional space, we use K-Means to cluster
all policies in the policy library. The elbowmethod is used to deter-
mine the number of clusters. Specifically, we keep increasing the
number of clusters starting from one cluster and calculate the iner-
tia of the current clustering result. The inertia is defined as the sum
of the squared differences of all samples from the respective clus-
ter center. We stop when the inertia starts decreasing linearly.
After the clusters are formed, we select n representative policies
from each cluster. This includes the policy that is closest to the
cluster center and n� 1 randomly selected policies from that clus-
ter. The closet policy to the cluster center is picked as it may rep-
resent the average performance of the cluster in the training
environment(s), and the other randomly picked policies increase
our confidence in the evaluation result. We set n to 5 in this study.

5.2.2. Ranking policies using historical data
Recall that D contains the historical data collected from the tar-

get building under the behavior policy pb which can be the existing
rule-based controller. To rank policies, we use importance sam-
pling to estimate the value of the evaluation policy pe from a tra-
jectory sampled from D. We adopt the three OPE methods
introduced in Section 3.1. The first two are IPW and SNIPW that
assume the action space is discrete, we discretize the action space
using the Freedman Diaconis estimator [24]. The third OPE method
is GK. We use a Gaussian kernel with a bandwidth of 0:3. The GK
method can work with continuous action spaces.Apart from the
OPE methods, we also test two ZCP methods, namely GN and SNIP,
both of which are introduced in Section 3.2. As previously men-
tioned, in RL, calculating the loss is not possible without deploying
the policy on the target building. We overcome this limitation by
re-weighting the rewards obtained in the offline dataset using
the importance sample ratio q s; að Þ defined in Section 3.1. Con-
cretely, we sample a trajectory from D and re-weigh the rewards
as follows:

r̂t ¼ q st ; atð Þrt ;
5

where at; st ; rt � D are respectively the action taken, state, and
reward received at time step t. We limit the size of D to 15 days
of historical data. By replacing the actual rewards with the re-
weighted rewards in the trajectory D we get a modified trajectory
that acts as a proxy for having deployed the evaluation policy on
the target environment. This proxy trajectory can then be used to
calculate LPPO, defined in (1). The loss is then backpropagated to cal-
culate the gradients for each layer, which are used by the gradient-
based ZCP methods (GN and SNIP). For clarity, we distinguish GN
and SNIP methods that use the proxy trajectory by referring to them
as GN* and SNIP*, respectively. Section 7.2 compares the efficiency
of the five policy ranking methods, namely SNIP*, GN*, IPW, SNIPW,
GK.

5.2.3. Evaluation metrics for policy ranking methods
To compare the performance of different ranking methods, we

obtain an estimate of the expected return for each policy by run-
ning it in the target environment. This yields a ranking of all poli-
cies, which we refer to as the ground truth ranking. We refer to the
expected return of each policy as its actual value. Then, each policy
is ranked using the offline methods presented in the previous sec-
tion. We compute the following evaluation metrics:

� Spearman’s rank correlation coefficient is the Pearson corre-
lation between the ground truth rank set and estimated rank
set. The higher the correlation coefficient, the closer the esti-
mated rank set is to the ground truth rank set.

� Regret@n is the difference between the actual value of the best
policy in the ground truth set, and the actual value of the best
policy in the top-n policies, i.e., the n policies with the highest
estimated values according to the offline ranking methods.
The lower the value of Regret@n, the better is our offline rank-
ing method.

5.2.4. Policy selection
In Fig. 2, there are two places where policy evaluation is per-

formed, namely Step 3 and Step 5. In Step 3, we rank the represen-
tative policies from each cluster to obtain the ranking of clusters,
whereas in Step 5, we only rank the policies from the top cluster.
The best-performing policy from the top cluster is then transferred
over to the (novel) target environment. All steps shown in Fig. 2 are
repeated for each zone in the target building to identify the policy
that should be transferred and used for that particular zone.

5.3. Policy transfer and retraining

After assigning the best policy to each zone in the target build-
ing, we retrain all policies using the multi-agent reinforcement
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learning framework in an online fashion. Updating the policies
through interaction with the target building allows the transferred
policies to further adapt to the target building environment.

6. Source and target buildings

To study the efficacy of the proposed methodology, we evaluate
it using the EnergyPlus model of three buildings, including a real
campus building. Each building has a unique occupancy schedule
which is encoded in the EnergyPlus model. We assume that if a
control policy outcompetes other policies with respect to the HVAC
energy use reported by EnergyPlus [23] without degrading thermal
comfort, it also outcompetes them in the real building, should it be
controlled using this policy.2

� Building A is a small office prototype building as defined by
ASHRAE Standard 90.1 [25]. Fig. 3a shows the floor plan and
3D model of this building. It contains five thermal zones (4
perimeter zones and 1 core zone) and is located in Denver, Col-
orado. Each zone is conditioned using a dedicated AHU and con-
tains a VAV system. The total floor area of this building is 511.16
m2.

� Building BDenver is a medium office prototype building as
defined by ASHRAE Standard 90.1 [25]. It contains 15 thermal
zones across three floors and is located in Denver, Colorado.
Fig. 3b depicts the floor plan of this building. There are 4
perimeter zones and 1 core zone on each floor. Each floor is con-
ditioned using an AHU and all zones are equipped with a VAV
system. Its total floor area is 4,982.19 m2.

� Building BSanFrancisco is the same building as BDenver with two
main differences: 1) it is located in San Francisco, California
and 2) its orientation is rotated by 45 degrees (clockwise). We
make these changes so as to investigate whether any of the
learned policies works well after transfer to a building with a
different orientation in a different climate.

� Building C is a medium campus building representing the
model of the building that houses the Department of Energy
Engineering at Sharif University of Technology in Tehran, Iran.3

It contains 26 thermal zones spread across five floors, 11 of which
are equipped with a VAV system. The HVAC, lighting, and blind
systems are modelled such that they match the design of these
systems in the physical building. We assume the building is
located in San Francisco, California, because weather data is lack-
ing for its actual location. The total floor area of this building is
5,051 m2.

Notice that the 3D views are scaled in Fig. 3 to demonstrate the
relative size of these buildings. Building A and Building B have sim-
ilar floor plans, yet their HVAC systems are different and their core
zones have different sizes. We also note that each building has a
unique occupancy schedule that is specified in the respective Ener-
gyPlus model.

7. Experimental results

In this section we describe our experiment setup, validate dif-
ferent parts of our methodology using microbenchmarks, and
finally make a comparison with baseline control methods in terms
of the total HVAC energy use. We start the evaluation on Building
2 We could not possibly deploy the many control policies we considered in this
work on real buildings to run the microbenchmarks. As a result we evaluated them
using EnergyPlus. In practice, the source building, where we train a diverse
population of agents, might be an EnergyPlus model, but the target buildings are
physical buildings.

3 Model is downloaded from https://github.com/DOEE-BMS/EnergyPlus-Model
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BDenver, and then run experiments on Building BSanFrancisco and the
model of a real building (Building C). Building A is our source build-
ing which is used to learn policies that constitute the policy library.

Our primary evaluation metric is the total HVAC energy con-
sumption. This is because our agents only change the minimum
damper position and all other control points are adjusted by the
EnergyPlus controller to satisfy thermal comfort requirements.
We empirically corroborate this by looking at Predicted Mean Vote
(PMV) under different control policies. We find that the EnergyPlus
controller manages to maintain the same PMV level regardless of
the minimum damper position. We also check if the amount of
outdoor air entering the zone satisfies the requirement defined in
ASHRAE 62.1 [26] (2:5L=s 	 person). We find the EnergyPlus con-
troller violates this requirement less than 0.004% of the time,
which is on par with the default controller.
7.1. Implementation details

We now describe our implementation.4 Control agents are
trained using PPO with � ¼ 0:2 (see Eq. (1)). We use a neural network
with two hidden layers, each consisting of 64 units, for actor and
critic networks. Hyperbolic tangent is used as the activation func-
tion. To sample continuous actions from the actor network, we use
a Gaussian distribution for the actor network to parameterize the
action. We set the learning rate to 0.0003 and the batch size to
2,976 which is equivalent to one episode.

We simulate the building operation using EnergyPlus 9.3 [23]
with the actual weather data for each geographical location, and
use COBS [27] to interface with the simulation environment. The
control policies are trained using PyTorch [28]. The EnergyPlus
model uses a 15-min simulation time step, and each episode is
one month. This is equivalent to 2,976 timesteps. The training
and test periods are both in January to eliminate the seasonal effect
in our simulation.5 We use weather data from January 1991 for
training and from January 2000 for testing. For each experiment,
we consider 15 independent runs to calculate the average
performance.

Building A is used to build the policy library considering both
policy and environment diversity as outlined in the previous sec-
tion. All policies are trained using PPO under the MARL framework
for 1,000 episodes to ensure convergence. We consider three policy
diversity weights w 2 0:1;1;10f g to identify near-optimal policies.
These policies are forced to be different from the optimal policy p


(w ¼ 0) that is learned for the given zone, hence Plearned ¼ p
f g in
Eq. (4). This results in 800 policies in the policy library — 10 ran-
dom seeds for training � 4 training environments � 5 zones per
environment � 4 diversity weights. We set the upper bound on
the probability ratio to 100 (�q in Eq. (4)). Since we select 5 repre-
sentative policies from each cluster in Step 5 (as explained in Sec-
tion 7.3), we use Regret@5 along with Spearman’s rank correlation
to evaluate different ranking methods. We build the policy library
on a server with Intel Xeon E5-2650 v4 (2.2 GHz CPU) and NVIDIA
Tesla P100 GPUs. It takes about 100 CPU days (mostly for Energy-
Plus) and less than 1 GPU day to construct the library.

Baselines. We consider four baselines: 1) the default controller
implemented in the building model, 2) zone-level control policies
learned via interaction with the target building (without transfer
learning) using the MARL framework, 3) a control policy that deci-
des on the minimum damper position of all zones and is learned
through interaction with the target building (without transfer
learning) in the single-agent RL (SARL) framework, and 4) zone-
level control policies learned on the source building and trans-
4 Code is available at https://github.com/sustainable-computing/building-MARL.
5 Studying seasonal effects is deferred to future work.

https://github.com/sustainable-computing/building-MARL


Fig. 4. The evaluation metrics for policy ranking methods where each dot
represents the score for a zone. The ground truth ranking was obtained by
manually testing each policy in the policy library on BDenver.

Fig. 3. The 3D view and floor plan of the buildings considered in this paper where north is marked on each floor plan.
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ferred to the target building assuming an oracle produced the opti-
mal assignment of policies to zones in the target building. The last
baseline is unrealistic and gives a lower bound on the building
energy consumption using the proposed method. We could not
implement this baseline because identifying the best policy for
each zone requires exhaustive search and expensive evaluation.
The first baseline is a controller that can be readily used (or is actu-
ally being used in case of Building C) — if we beat this baseline, it
means that our policies can reduce the HVAC energy use without
sacrificing thermal comfort.

7.2. Comparing policy ranking methods

We compare different policy ranking methods on BDenver. To
obtain the ground truth ranking of the policies, we use brute force
search: we deploy each policy onto the target building (BDenver)
and calculate the HVAC energy use. Since there are 15 zones in the
target building, we obtain 15 sets of ground truth rankings.We then
use different policy ranking methods to rank policies for each zone.
The resulting ranking is comparedwith the ground truth ranking for
the same zone to compute the two metrics described in
Section 5.2.3.

Fig. 4 (left) shows Spearman’s rank correlation for all the policy
ranking methods. Among the OPE methods, IPW has a mean Spear-
man’s rank correlation of 0:71, whereas SNIPW has a mean of 0:12,
indicating that IPW performs considerably better than SNIPW. The
GK method has a mean of 0.84 and its performance is better than
that of IPW with statistical significance (P < 0:0001). The two
ZCP methods have similar performance with GN* and SNIP* having
a mean Spearman’s rank correlation of 0:65, and 0:66 respectively.
From this figure, we conclude that the GK method performs best in
terms of Spearman’s rank correlation.

Fig. 4 (right) compares the Regret@5 metric for all the ranking
methods. The regret values are normalized according to the maxi-
mum difference between the actual value of the best and worst
policies in the ground truth set. We see that the GK method with
a mean regret of 0:19 is not the best performing method. Instead,
SNIP* yields a mean regret of 0:05, which is the lowest among
the ranking methods. When comparing SNIP* with GN*, the former
has a lower Regret@5 with statistical significance (P ¼ 0:018).

Although the GK method has the highest Spearman’s correla-
tion, SNIP* outperforms the OPE methods when it comes to
Regret@5. To take advantage of the GK method’s high Spearman’s
correlation as well as the ability of SNIP* to more accurately iden-
tify the top-performing policies, we employ GK for Step 3 and
SNIP* for Step 5 of our proposed methodology as shown in Fig. 2.

7.3. Policy clustering analysis

Next we examine our policy clustering result to coordinate that
policies in the same cluster perform similarly in the target build-
ing. Ideally the top cluster should contain the majority of well-
performing policies. We consider BDenver for this microbenchmark.
The elbow method suggests clustering the policy library into six
clusters for all zones.

After ranking representative policies from each cluster in Step 3,
we only consider the top performing cluster. Given that the elbow
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method yielded 6 clusters, Step 4 eliminates 83% of the policies in
the policy library. We assess the risk of incorrectly removing well-
performing policies by plotting the ground truth energy perfor-
mance distribution for all clusters in Fig. 5. The x-axis represents
the total monthly energy consumption if the policy is selected as
the behavior policy for the given zone, and all other zones are con-
trolled using the default controller. The left-most curve in Fig. 5
shows the empirical CDF of policies that belong to the top cluster.
Interestingly, more than 50% of these policies keep the total
monthly energy consumption below 9.5MWh. This is while the
other clusters barely include a policy that achieves the same per-
formance. This implies that the left-most curve represents the best
performing cluster and neglecting policies in other clusters should
not affect the HVAC energy consumption. Although there is a small
overlap between the top three clusters, for every zone, there is at
least one policy in the top cluster that is better than all the policies
in these two clusters.

Recall that we sample n ¼ 5 policies from each cluster to esti-
mate the performance of each cluster. From Fig. 5, we conclude
that even if we sample only 1 policy from each cluster, the chance
of incorrectly identifying the best performing cluster is slim. Sam-
pling 5 policies would further reduce the probability of misidenti-
fying the top cluster.

7.4. Policy transfer to BDenver

In the previous section, we argued that combining GK for clus-
ter ranking with SNIP* for policy ranking within the top cluster
enables us to take advantage of high Spearman’s correlation of
GK as well as low Regret@5 of SNIP*. We refer to this combination
of policy ranking methods as GK-SNIP*. We compare the zonal con-
trol policies selected from the policy library by GK-SNIP* with four
baselines introduced in Section 7.1 to evaluate the efficacy of the
proposed methodology.

Fig. 6 shows the performance of our proposed method with
other baselines on the target building BDenver, which is different
from the source building, Building A, in terms of the floor area
and HVAC design. However, both buildings are located in the same
city and they have relatively similar floor plans. All policies are
either selected from the policy library or initialized randomly



Fig. 5. The cumulative density plot for the distribution of policies’ performance
when we form six clusters on a select zone in building BDenver . Each line represents
the distribution of one cluster. A similar result can be obtained from other zones in
the building as well.

Fig. 6. Learning curve of different controllers on Building BDenver. Each solid line
shows the average performance of 15 runs and the shaded area shows one standard
error from the mean. The y-axis is exaggerated.
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(SARL and MARL). Regardless, they are (re) trained for 500 episodes
(months). Policies that need extensive training are not suitable for
deployment on real buildings. For instance, the SARL controller
trained on the target building (without transfer learning) reaches
the same level of performance as the optimal policies assigned
from the policy library only after 15,000 episodes, i.e., 1,250 years
after the deployment!.

It can be readily seen that the proposed policy selection and
transfer method provides a reasonable assignment for all zones in
BDenver. The performance of the proposed GK-SNIP* policy ranking
method at episode 0 (5.41 MWh) is 22.5% better than the default
controller that is presumably designed by HVAC engineers (6.98
MWh). It is also significantly better than SARL (13.74 MWh) and
MARL (13.77 MWh). This suggests that GK-SNIP* can be employed
to select policies that have reasonable performance on the target
building. The optimal assignment has an initial total energy cost of
3.99 MWh. The difference between the proposed policy selection
method and the optimal selection is partly due to how we sample
policies from the top cluster. Note that the policies assigned to the
target building under the optimal assignment do not benefit signif-
icantly from retraining. Specifically, the total HVAC energy con-
sumption reduces by 3.8% (from 3.99 MWh to 3.84 MWh) after
500 episodes. We believe this is because there is not much room
for improvement as we are already close to the minimum HVAC
energy consumption that could be realized by a controller in this
building given its occupancy schedule and comfort requirements.

The performance of zonal control policies selected by GK-SNIP*
improves by 10.2%, reaching the total monthly energy consump-
tion of 4.86 MWh after 500 episodes of training on BDenver. This is
30.4% less than the energy consumption of the default controller.
Policies trained only on BDenver (not transferred from Building A) fail
to reach a level of performance that is comparable with the default
controller at the end of the 500 episodes. SARL reaches 12.23 MWh
and MARL reaches 13.17 MWh of monthly energy consumption.
We also witness an increase in the energy consumption under
MARL after around 200 episodes. This might be because agents
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are not collaborating with each other. As a result, they start to can-
cel out each other’s action (creating a ‘‘fighting zones” situation),
thereby increasing the total HVAC energy use.

7.5. Policy transfer to other buildings

To further validate our proposed methodology, we consider two
target buildings (BSanFrancisco and C) that have some major differ-
ences with the source building (Building A). Building BSanFrancisco is
located in a warmer climate than the source building. Moreover,
it differs from the source building in terms of the floor area and
HVAC design. Building C is a real building. It has several differences
with the source building, including its size, occupancy, floor plan,
HVAC design, and weather conditions.

Fig. 7 depicts the performance comparison in Building
BSanFrancisco. The total energy consumption in all cases is lower than
Fig. 6 because we are looking at a winter month with a higher aver-
age outside temperature in San Francisco, reducing the heating
demand of the building. Most of the observations made in Sec-
tion 7.4 are true in this case. Before retraining, the zonal control
policies selected from the policy library by GK-SNIP* achieve
16.4% lower monthly energy consumption (3.31 MWh) than the
default controller (3.96 MWh). The optimal assignment yields the
lowest monthly energy consumption at episode 0 (2.01 MWh),
which is 49.2% lower than the default controller. After 500 epi-
sodes of training, the policies selected by GK-SNIP* reduce the total
HVAC energy consumption by 10.3%, reaching 2.97 MWh. This is
25.0% lower than the energy consumption of the default controller,
yet 50.8% higher than the optimal assignment.

Fig. 8 compares the performance of the proposed method with
the four baselines in Building C. The same observation can be made
here too. GK-SNIP* performs better than the default controller,
SARL, and MARL, and is slightly worse than the optimal assign-
ment. The default controller consumes 4.83 MWh of energy in
one month, whereas the proposed GK-SNIP* method reduces it to
4.71 MWh before retraining and to 4.64 MWh after 500 episodes
of training in the target building. These numbers are 4.413 MWh
and 4.411 MWh for the optimal assignment.

Our experiments support the claim that diversity-induced RL
offers clear benefits for transferring policies to a novel target build-
ing, and that the proposed GK-SNIP* policy selection and transfer
method can efficiently identify policies, among the policies in the
policy library, that perform relatively well in the novel target build-
ing using only 2 weeks of historical data. The transferred policies
consistently outperform the default controller in terms of the HVAC
energyusewithout sacrificing thermal comfort. This is the case even
before these policies are retrained to adapt to the new environment.

7.6. Ablation studies

This section considers two ablation experiments to further
explore understand the performance of the different approaches.

7.6.1. Other combinations of ranking methods
We now study the effect of using different policy ranking meth-

ods in the OPE evaluation steps. In particular, we look at the result
of using GK in both steps (labelled GK-GK) and using SNIP* in both
steps (labelled SNIP*-SNIP*). From Figs. 6–8, it can be readily seen
that GK-SNIP* always achieves lower monthly energy consumption
than GK-GK. This is true before and after retraining on the target
environment. We attribute this to the fact that once the best per-
forming cluster is identified, the Regret@5 metric becomes more
relevant as we aim to identify the top performing policies.

It is important to point out that the difference between GK-
SNIP* and SNIP*-SNIP* is not significant. For this reason, we
remove SNIP*-SNIP* from all figures so that GK-SNIP* result can



Fig. 7. Learning curve of different controllers on Building BSanFrancisco. Each solid line
shows the average performance of 15 runs and the shaded area shows one standard
error from the mean.

Fig. 8. Learning curve of different controllers on Building C. Each solid line shows
the average performance of 15 runs and the shaded area shows one standard error
from the mean. The y-axis is exaggerated.
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be better seen. The difference between GK-SNIP* and SNIP*-SNIP*
becomes more pronounced as the number of episodes for training
increases. But even after 500 episodes of training, the policies
selected by SNIP*-SNIP* consume only 1.0% (4.91 MWh), 3.4%
(3.07 MWh), and 0.2% (4.65 MWh) more energy in Building
BDenver, Building BSanFrancisco, and Building C respectively, when they
are compared with the policies selected by GK-SNIP*. We attribute
this small gap to the fact that the top cluster is well-separated from
the other clusters; therefore, the first round of evaluation is more
robust to potential estimation errors.

7.6.2. Effects of incorporating diversity
Is it necessary to incorporate both types of diversity for transfer

learning? To answer this question, we examine the policy assigned
to each zone in the optimal assignment. Several important obser-
vations can be made. First, all the policies assigned to the target
building are trained with a nonzero policy diversity weight, so they
are near-optimal policies in the source building. Second, the best
policy found for six zones in Building BDenver, one zone in Building
BSanFrancisco, and one zone in Building C is learned on the source
building using both environment and policy diversity. Third, the
core zones on the top and middle floors of BDenver and BSanFrancisco

are assigned the same policy from the policy library. This is the pol-
icy that was learned with diversity weight 0:1 for a perimeter zone
in the replica of Building A with window blinds that were closed
(created using environment diversity). Fourth, the proposed GK-
SNIP* method tends to select policies that are trained with diver-
sity for all target buildings. This confirms our hypothesis that both
kinds of diversity would benefit transfer learning.

8. Discussion

Our experimental results confirm that by selecting high-quality
policies from a library of diverse policies that are learned in a
source building and transferring them to the target building, we
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can significantly reduce the cost of training RL-based controllers
and achieve a better performance than the default controller, even
before training them on the target building. To identify these poli-
cies, we need only two weeks of log data from the target building.
This data is typically generated by a reference controller, such as a
rule-based controller that was previously used in that building. The
reliance on the log data raises an interesting question: how would
the performance of our baselines, in particular SARL and MARL
agents, change if the same amount of log data was used to train
them in an offline fashion?.

In a recent paper, Nweye et al. [29] found that this kind of off-
line training leads to improved performance in the long run if the
log data is generated by an optimized rule-based controller. To
investigate the efficacy of offline training in our setting, we use
the two weeks of log data generated by the default (rule-based)
controller in the target building (our first baseline) to train MARL
and SARL agents in an offline fashion via behavioral cloning – an
imitation learning approach that learns a direct mapping from
states to actions. Specifically, in the MARL setting, we use the mean
absolute error between the action of the default controller in each
zone and the action taken by the corresponding zone-level RL pol-
icy as the loss. In the SARL setting, we define the loss as the average
Euclidean distance between the default controller actions in an N-
dimensional space (where N is the number of zones in the target
building) and actions returned by the RL policy for all zones.

Our result indicates that warm-starting MARL and SARL from
the default controller improves their performance across all epi-
sodes. Nevertheless, the performance gain varies greatly among
the three target buildings that we considered, and our proposed
approach (GK-SNIP*) consistently outperforms the warm-started
MARL and SARL agents, assuming the same amount of log data is
used for policy selection and offline training. In particular, in Build-
ing BSanFrancisco, the warm-started MARL agent is better than the
warm-started SARL agent, and can save 5.1% and 22.0% on monthly
HVAC energy consumption compared to the default controller at
episode 0 and episode 500, respectively. Moreover, its performance
is on par with GK-SNIP* between episode 220 and episode 500. But
the performance of the warm-started SARL and MARL agents is
markedly worse than GK-SNIP* across all episodes in Building
BDenver and Building C. In fact, the warm-started agents cannot even
beat out the default controller in Building C. We attribute this vari-
able performance to two main factors. First, more log data is
required for behavioral cloning in larger buildings with more
zones. In this experiment, we used 2 weeks of log data for a fair
comparison with our approach. Second, the default controller is
not optimized in some buildings, hence performing offline training
using the log data generated by this controller may not be effective.
We plan to explore other types of imitation learning and compare
the performance of resulting agents with our diversity-based
transfer learning approach in future work.
9. Related work on HVAC control

Mounting interest in optimal operation of complex physical
systems has led to the design of various rule-based, model-based,
and learning-based control strategies. In the context of HVAC con-
trol, these strategies minimize the building energy use while main-
taining a comfortable indoor environment for occupants. In rule-
based HVAC control, rules and setpoint schedules are typically
defined by the facilities manager based on their intuition of the
building’s function and occupancy. Rule-based controllers are rela-
tively easy to implement and can considerably reduce the building
energy consumption [3,30]. But their performance heavily relies on
the quality of the control rules and setpoints.
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In model-based HVAC control, models for heat transfer, occu-
pancy, and other dynamics are used to predict the heat load and
energy demand of the building. These models are built using
physics-based or data-driven approaches. In MPC, these models
are used to minimize energy use and occupant discomfort over a
finite time horizon. Such controllers can significantly reduce the
energy consumption [31–33], but developing models for large,
multi-zone buildings is a challenging task, requiring manual effort
or a substantial amount of training data [34]. Even if accurate mod-
els are developed and incorporated in the control loop of one build-
ing, they cannot be directly transferred and reused in another
building.

Learning-based control algorithms, such as model-based and
model-free reinforcement learning, are proven to be useful for
HVAC control. Specifically, they can find an optimal policy that
minimizes energy consumption while maintaining thermal com-
fort [5,7,35,36]. An RL agent learns the mapping between the state
of the building and an action via trial and error. Unfortunately,
training these RL agents requires a substantial amount of data to
sufficiently explore a large or continuous state-action space. As
more features are added to the state, the complexity and the num-
ber of parameters used to represent the agent grows exponentially.
Moreover, a single agent that controls multiple actuators cannot be
easily transferred to another building that has a different state and/
or action space. Chen et al. [35] reduce the training cost of an RL
agent that controls the HVAC system through a differentiable
MPC policy that encodes system dynamics and offline imitation
learning, using the operational data collected under a default con-
troller. However, learning an accurate model can be challenging in
a given building and more historical data would be needed to fully
capture the system dynamics. Similarly, offline RL techniques gen-
erally require a substantial amount of historical data before they
can learn a high-quality policy.

In a recent survey paper, Pinto et al. [37] have reviewed the
applications of transfer learning to buildings, including papers that
use transfer learning to address the data inadequacy challenge in
developing learning-based controllers for building systems. This
literature review reveals that there is no paper that takes advan-
tage of diversity for transfer learning in this domain. Xu et al.
[38] address the problem of transferring previously learned HVAC
control policies to an unseen building. Their methodology involves
decomposing the policy neural network into a transferable front-
end network and a trainable back-end network. The front-end net-
work captures building-agnostic behavior, whereas the back-end
network needs to be trained on the target building. Although this
approach reduces the training cost of RL to some extent, control
performance can still be poor while the back-end network is being
trained in the target building. In another line of work, Fazel et al.
[39] propose augmenting the training data collected from the tar-
get building. The authors use generative adversarial networks to
learn the building performance profile from the actual data, and
generate synthetic data that reflect climate and operation varia-
tions, while keeping the building profile the same. However, 1 year
data is required to train the generative model, which may not be
readily available in all buildings.

Multi-Agent Reinforcement Learning (MARL)-based controllers
are proven to be useful in energy-efficient control of building sys-
tems [40,41], and are amenable to transfer learning [42]. MARL
enables controlling different knobs in one or multiple building sys-
tems, e.g., Zhao et al. [43] use separate agents to manage electricity
flow, cooling components, heating components in a building.
Unlike the previous work that control multiple building systems
using MARL, in this paper we decompose the optimal control of
the HVAC system into the problem of controlling the environment
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of individual thermal zones in the building, which can be solved
using MARL. In this setting, each agent is responsible for control-
ling the HVAC components (e.g., control points in the variable air
volume system) in one zone of the building. This reduces the size
of an agent’s state-action space and enables the transfer of policies
to other buildings, regardless of the number of zones they have or
their floor plan. This is because, at the zone level, most buildings
have the same set of sensors and actuators, so the corresponding
agents will have an identical state-action space.

In previous work [9], we showed that introducing diversity
when learning MARL policies is advantageous for transfer learning.
However, we did not explore how to efficiently select high-quality
policies for transfer. In this work, we propose a two-step policy
selection method, which involves policy clustering and evaluation.
We also address the potential issue with the unbounded action
probability ratio as discussed in Section 5.1.
10. Conclusion and future work

In this paper we investigated efficient evaluation of a large
number of HVAC control policies through policy representation
and clustering, and took advantage of it to transfer select policies
that are trained on a prototype building to multiple new buildings.
The novelty of our work is in (a) designing a policy diversity loss
that helps create a library of diverse policies, (b) combining policy
clustering and policy evaluation techniques to quickly identify
high-quality policies among the policies in the library for the given
building, and (c) modifying standard ZCP-based methods to make
them applicable to the policy selection problem in reinforcement
learning.

We compared the efficacy of various OPE and modified ZCP
methods using microbenchmarks, and found that GK and SNIP*
are the best performing policy ranking methods. We then ran
experiments on three target buildings. These experiments revealed
two key findings. First, the proposed offline policy selection algo-
rithm effectively identifies high-quality zone-level control policies
using only two weeks of log data generated by the default con-
troller in the target building. Second, diversity can help with gen-
eralization to novel environments to a great extent.

Although the transferred zonal control policies perform 4.0–
30.4% better than the default controller, which is remarkable, the
gap between these policies and the optimal policy is still large. In
future work, we plan to investigate other policy ranking methods
and improvements to close this gap. Moreover, we will further
explore online policy selection methods, and study seasonal effects
and policy transfer across different seasons.
Data availability
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