
State and Reward Design:
Towards Reinforcement Teaching

Alex Lewandowski1,2, Calarina Muslimani1,2, Matthew E. Taylor2, Jun Luo1

1Huawei Noah’s Ark Lab, jun.luo1@huawei.com
2University of Alberta, {alex3, musliman, matthew.e.taylor}@ualberta.ca

Abstract

A reinforcement learning agent that learns tabula rasa will make many missteps on
its way to maximize its return. To accelerate learning, we can introduce a teacher
agent that learns by observing the student, and acts by tuning the environment. In
this paper, we provide a framework for learning to teach reinforcement learning
agents by encoding the student’s trajectory. We investigate different state represen-
tation and reward functions for the teacher. In tabular environments, we conjecture
that the greedy policy induced by the learned action-values, not the action-values
themselves, is an ideal state representation. We then propose three architectures
that encode the student’s trajectory to approximate the state representation provided
by the greedy policy. Learning the teacher’s policy offline, we find that the greedy
policy state representation is superior, but that the trajectory based state represen-
tation is a close competitor. In addition, we design a new reward function for the
teacher that enables the student to convey information about its learning progress.
We show that the resultant teacher curriculum increases student learning efficiency
compared to training the teacher with a minimal encoded reward function. These
findings suggest that a general framework for reinforcement teaching can increase
the sample efficiency of reinforcement learning.

1 Introduction

Reinforcement learning agents navigating the world are required to complete tasks of varying
difficulty. More difficult tasks take longer to learn, by definition, but it is often the case that learning
easier tasks first can help with learning harder tasks [3, 2]. This is the basis for curriculum learning,
in which a mechanism assigns tasks to a student agent to help it learn easier tasks before progressing
in difficulty [17]. Curricula are often hand-crafted, however, and rely on expert domain knowledge.

If prior knowledge is insufficient to specify a curriculum for an agent, can we learn a mechanism
that provides a sequence of tasks to the student? This is the focus of automatic curriculum learning.
Instead of relying on expert domain knowledge, the mechanism learns an optimal curriculum over
tasks to maximize an agent’s competence on the target task or over a set of tasks. Curricula have been
learned through a variety of mechanisms, including self-play [25], active domain randomization [15],
and reverse goal generation [7]. Other work extends Generative Adversarial Networks [9], to the
auto-curricula setting, which allows for one agent to generate tasks/curricula via a generative model
and another agent to evaluate whether the proposed task is appropriate using a discriminator [23, 6].

Another promising line of research is student-teacher curriculum learning. In this setting, a teacher
agent learns to provide appropriate tasks to a student agent based on the student’s current skill set
[14]. There are many ways that a teacher can help a student agent learning through reinforcement.
For example, the teacher can provide action-advice [5]. Narvekar et al. (2017) proposed a two-level
MDP, with the teacher agent operating in a curriculum MDP that chooses tasks for the student, and
the student agent operating in an MDP associated with the given task [18]. In the curriculum MDP,

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



Teacher Agent

Student Agent Environment

Figure 1: A student and teacher both learn in their own MDP. The student interacts with its environ-
ment by sending actions At and observing the state and reward St, Rt. The teacher agent observes
trajectory of the student, and possibly the student’s parameters θ, and takes actions ψ that influence
the environment.

the state space is the set of all student policies, and the action space is the set of possible tasks for the
student agent. The teacher is trained to minimize the time taken for the agent to reach a threshold
level of performance. Two issues pertaining to the state representation and the reward structure arise.
For the state representation, with function approximation, the state space would be the parameter
space of the student agent. The parameter space of a policy is a very large and unstructured state
space, which can make learning a policy on these states difficult. Although the parameter-space state
representation was simplified using tile coding [19], it is still limited to policies with a fixed and
small number of parameters. As for the teacher’s reward function, the student only provides binary
information on success or failure of a task. The student could convey more meaningful information if
it could indicate how it is progressing throughout its training.

These approaches can be contrasted with other formulations of the student-teacher setting that
considers the teacher agent as a bandit problem [22, 10]. Work on the bandit formulation emphasizes
the use of learning progress signals to enable the teacher to detect how much progress a student is
making on a given task. The use of bandits does simplify the problem, because we no longer need to
represent the state of the student agent. However, it sacrifices the teacher’s ability to differentiate
between different students.

In this work, we consider the student-teacher curriculum learning framework, and aim to investigate
more general state representations and reward functions to improve the teacher’s ability to generate
curricula for a student. Our main contributions are as follows (1) We show that the greedy policy is an
ideal state representation and then propose an architecture that approximates this state representation
from the student’s trajectory (2) Develop a novel reward function, based on learning progress signals
that enable the student to convey a richer set of information on its learning progress.

2 Background

Before we address the curriculum learning problem, we first briefly describe the Markov Decision
Process (MDP) formalism that underpins reinforcement learning [13, 26]. An MDPM is defined by
the tuple (S,A, r, p, µ), where A denotes the action space, S is the state space, r : A× S → R is
the reward function that maps a state and an action to a scalar reward, p : S ×A× S → [0, 1] is the
state transition function, and µ is the initial state distribution.

2



The curriculum learning problem can also be specified using the MDP formalism. This prob-
lem formulation is referred to as a Curriculum MDP MC and it is defined by the 6-tuple(
SC ,AC , rC , pC , SC0 , SCf

)
[18]. Each element is defined analogously to the MDP formalism.

These elements can be interpreted as follows: the state-space SC is the set of all student policies, AC
denotes the tasks available to the teacher, the reward function rC : AC × SC → R incentivizes the
teacher to help the student reach competency quickly, p : S ×A× S → [0, 1] is the state transition
function, SC0 is the distribution over start states and SCf is the set of terminal states.

In a Curriculum MDP, the goal of the student is to maximize its return in any environment it
encounters, and the teacher’s goal is to guide the student to quickly solve the target problem, denoted
by ψ̃. For clarity, we will denote the MDP that the student interacts with as the student MDPMS

ψ

that depends on some hyperparameter settings, or a task encoding, by the subscript ψ. The teacher
achieves this by taking actions ψ ∈ AC that change the student’s environment MS

ψ away from
the target problemMS

ψ̃
. The teacher observes the student, selects an action and through the state

transition in the teacher’s MDP, observes the new student after learning from the proposed action ψ,
along with an associated reward for the teacher’s action. The role of ψ depends on the problem, but it
can control any aspect of the student’s MDP, such as the start-state distribution µS , reward function
rS or transition function pS .

3 The Teacher’s MDP

Using reinforcement learning to teach a student can also be formulated solely in terms of the
interaction between the student, the student’s environment and the teacher. We define the teacher’s
MDP MT , as the tuple MT = {ST ,AT , pT , rT , µT }. Each element is defined similarly to a
Curriculum MDP, except for the state-space ST which is no longer the set of policies. The action
set for the teacher AT corresponds to putting the student in a particular task, the reward function
rT : AT × ST → R should incentivize the teacher to help the student reach competency quickly,
pT : ST ×AT × ST → [0, 1] is the state transition function, and µT is the initial state distribution.

In this paper, we investigate different state representations and reward functions for the teacher. The
student’s environment and its available scenarios ψ defines the action set AT , while the student’s
learning algorithm determines the transition function pT . It remains an open question how to best
choose a state representation ST (which will induce an initial state distribution µT ) and a reward
function rT to facilitate efficient learning.

Before a teacher can take actions that improve the student, the teacher must first represent the state
of the student. Consider the following analogy: a teacher gives a student an assignment and may
provide other assignments based on the student and the result of their assignment. While largely
impractical, the brain state of the student represents exactly the student’s state, and carries more than
sufficient information to inform the teacher. On the other hand, looking at the student’s score on
the assignment does not provide enough information for effective remediation (which we will show
empirically in Section 5.2). The teacher may, instead, process the set of questions and answers that
the student provides and, using this information, identify areas of strengths and weaknesses for the
student. This information can then be applied by the teacher to assign effective remedial treatment,
in the form of a more appropriate assignment. In reinforcement learning terms, the first approach
would use the parameters of the student policy [18]. The bandit approach [14], which looks at only
the reward, represents the second approach in the analogy and does not provide enough acuity to
identify proper remediation. The last approach, which encodes the student trajectory, is the approach
we take and describe in Section 3.1

For a teacher to accurately assess a student’s performance, it needs to monitor the student’s progress
in the target task. The student is represented by the state in the teacher’s MDP, and rewards should
correlate with the student successfully completing the target task. A minimal approach to encoding
this goal is to provide a reward of 1 for reaching a threshold level of performance [18]. While this
encodes the intended behavior, credit assignment becomes very challenging. In this type of reward
structure, the student takes on a passive role within its own learning process. The student receives
tasks to learn and can only communicate with the teacher once its performance on the target task has
reached a specified value. However, if the student-teacher relationship were bi-directional, this would
allow for the student to convey more meaningful information. This can include when the student is

3



not making progress on a difficult task or when it’s ready to receive a more challenging task. As
an alternate approach, we can approximate when the student’s learning has plateaued on a given
task, and use this to bias the teacher on what task to provide next. In this case, we consider how
the student is progressing on all tasks, not just the target task. To form this approximation, we take
inspiration from methods based on Learning Progress (LP) which consider the change in either loss
or a evaluation metric before and after training on a given task [22, 21, 14, 10]. In this setting, as this
difference converges to 0, an agent is said to be making less progress on a given task. We describe
this in more detail in Section 3.2.

Next, we describe the reward design and state representations. These are two design choices that
have many possibilities and hence we designate their own subsection for extended discussion. The
design choices discussed here will be later ablated in the experiments in Section 5.

3.1 State Representation

When the student’s environment is tabular, one possible state representation uses the action-value
table of the student [20, 18], which we denote as the Student-Q state representation. When the
student uses a function approximator, neither the action-value table nor the policy are available.
Instead, the parameters of the function approximator can be concatenated into a vector [19], which
we denote as the Student-Parameter state representation. Unlike the parameter state representations
with function approximation, the Student-Q state representation provides a semantically meaningful
representation of the student’s current state. Each entry of the action-value table is bounded (if the
rewards are bounded) and is a function of the learning rate, as well as the state, actions and rewards
encountered by the student in its trajectory. Many action-value tables can represent the same policy,
because only the relative difference of action-values determines the optimal action. Ultimately, the
behaviour of the student determines it’s performance, not the accuracy of its action-value estimates.
Our first proposal is to directly encode this by transforming the action-value table into a greedified
policy. This policy parameter representation, which we denote Student-π, is our first modification
and provides intuition for our following generalization.

We generalize the problem of learning a state representation by allowing the teacher to directly encode
the student’s episode trajectory. The student’s episode trajectory is a local representation of the “state”
of the student agent, and it represents local information about the policy. Global information of the
student policy, on the other hand, would require looking at the parameters and architecture of the
policy. We posit that local information from the trajectory, when properly encoded, is enough to
approximate the global policy. In Section 4.2, we specify an architecture that can learn to approximate
the global policy from the student’s trajectory alone.

There are several advantages of using local information from the trajectory, as opposed to global
information about the policy. First, a trajectory-based state representation is agnostic to the parame-
terized family of the policy. This allows us to use our approach with hand-designed controllers and
any neural architecture. Another issue is that the parameter space is unstructured. Many different pa-
rameterizations can lead to the same neural network output (e.g., if the rows or columns of all weight
matrices are permuted). It is also not straightforward to encode non-linearities and overall network
architecture, a process known as fingerprinting [11, 4]. Lastly, we can also scale to policies with
larger numbers of parameters, without encountering difficulties with storing large weight matrices
and requiring the teacher’s neural network to learn from these semantically meaningless states.

3.2 Designing the Reward Function

Within the student-teacher framework, the teacher should not only be enforcing which tasks the
student will learn, but ideally the student should communicate with the teacher when it’s ready to
learn a different task. This bi-directional component can allow for the student to convey when it’s
not making progress on a difficult task or when it’s already learned an easier task. To that end, we
design a novel reward function which begins to enable this bi-directionality. The essence of the
reward function is based on two signals (1) Stagnation Factor (as defined in Algorithm 1) and (2)
Learning Progress (LP). We develop the Stagnation Factor (SF) as a means to inform the teacher on
how long the student has made no changes in learning on a task. If SF is high for a given task, we
say the student’s learning on this task has plateaued. Learning Progress provides information on the

4



magnitude and direction of the change in student learning. For example, a large positive LP signal
indicates the student is making significant progress on a task.

To determine the teacher’s reward, we first calculate the LP and SF for a given task, aT the student
encountered. Let SFaT and LPaT denote the Stagnation Factor and Learning Progress for the specific
task aT . If SFaT exceeds a specific threshold, the teacher receives a negative reward. This informs
the teacher that with the student’s current skill set (1) the task is too difficult and the student is not
making any progress on it or (2) the task is too easy and the student needs a different one. If the
student’s learning hasn’t plateaued, we use LPaT as the teacher’s reward. See 1 for pseudo-code
of the reward function. In addition, we also reward the teacher with a binary 0/1 reward based on
whether or not the student has succeeded on the target task. This avoids the case where the student has
converged on the optimal policy for the target task, but the teacher is still penalized for convergence.
This design not only enables the student to convey more information about it’s learning progress to
the teacher but also removes the need for hand-coded success thresholds.

Algorithm 1 LP-SF Teacher Reward Function

Initialize Stagnation Factor (SF) for all N teacher actions to 0
Let ε > 0 and Threshold > 0

Student receives task aT from Teacher
Train student using task aT and observe LPaT = GaTt −G

aT
t−1

if LPaT ∈ [0− ε, 0 + ε] then
Increment SFaT by 1

else
SFaT = 0

end if

Calculate Teacher Reward:
if SFaT > Threshold then

RT = −1
else

RT = LPaT
end if

4 Learning Offline in a Teacher’s MDP

With the teacher’s problem formulation from the previous section, we now turn to the problem
of learning in the teacher’s MDP. Learning in the teacher’s MDP is more difficult than in the
student’s environment, even for simple tabular student environments. The reason for this is that,
even if the student’s state and action space is discrete, the trajectory generated by the student can be
combinatorially large. Even for tabular student environments, the teacher’s problem requires function
approximation.

4.1 Learning a curriculum offline

One criterion for a good teacher learning algorithm is low sample complexity. Interacting with the
teacher’s MDP and evaluating a teacher is expensive. A teacher’s episode corresponds to an entire
training trajectory for the student. Hence, generating numerous teacher episodes involves training
numerous student agents. The teacher agent cannot afford an inordinate amount of interaction with
the student. One way to meet the sample complexity needs of the teacher is to use off-policy learning,
such as Q-learning. Offline learning can also circumvent the costly interaction protocol, and so we
investigate state representations and reward functions that allow us to learn from data generated
by uniformly random teacher policy. While there is a large and growing literature on offline RL
algorithms [28, 27, 8, 12], we found that offline Q-learning (Offline DQN [1], i.e. Neural Fitted Q
Iteration [24], with target networks and a replay buffer) works in this regime and leave investigation
of other offline-specific algorithms for future work.

5



4.2 Learning a state representation

In the tabular setting, the tabular policy is an ideal state representation. When using function
approximation however, we no longer have access to the tabular policy. We can still log information
about the policy in the states encountered by the student agent. Trajectory may differ in length, and
thus this state representation would not have a constant size. In addition, the states encountered along
the trajectory vary depending on the policy. These two issues prevent us from naively concatenating
the outputs along the trajectory, and force us to consider an encoding of the trajectory instead.

We now propose an architecture for learning a state representation from the student’s trajectory.
Consider a trajectory τ = {S0, A1, R1, S1, A2, . . . , SL} of length L. Trajectories encode temporal
information relating states, actions and rewards. One way to encode a temporal sequence is by
using a recurrent architecture. The inputs for the recurrent architecture at each time step is the
concatenation of the state st with either the: action (a), student’s action-value at st (Q(st)) or the
agent’s policy at st (π(st). Where both elements in the concatenated vector are first fed through
separate fully-connected neural networks, hence concatenating their representation. We denote these
three possibilities as: Encode-Action, Encode-Q and Encode-π. The goal of these three methods is
to encode the trajectory and learn an approximation of the global policy of the student agent. We
include the Q variant to compare against the “Student-Q” state representation, and we include the
“action” variant because actions are the only information we typically have about a student.

5 Experiments

We conduct experiments using a Four Rooms grid world environment for the student where the
teacher has control over the start state of the student agent. The target task is starting in a state that is
on the opposite corner from the goal. While this is easily solvable for a tabular learning agent, we
limit the number of steps the student agent can take to only 25 steps in a single episode. The low
number of steps in an episode makes it unlikely for the student agent to ever reach the goal without a
teacher connecting these partial trajectories from the start state to the goal.

In all experiments, we compare against a uniformly random teacher policy and a teacher that selects
the action that corresponds to the target task (“no teacher”). In the state representation experiments,
the learning algorithm for the teacher is an offline DQN [16, 1] and the teacher learns from 1000
episodes from a uniformly random teacher policy. In the reward design experiments, the teacher is
trained with the online DQN algorithm over 1000 episodes. In both cases, the student is a Tabular
Q-Learning agent.

5.1 Reward Design Experiments

For the Four Rooms domain, we experimented with two teacher action sets. The regular action set
contained the four corridor states and the start state of the target task. The larger action set expanded
on the regular action set by including 3 additional states neighboring the start state. In the reward
design experiments, our goal is to understand the effectiveness of our reward function. Therefore,
we only use one state representation for the teacher which is the Return representation concatenated
with the teacher action, teacher reward, indicator (1/0) of student’s success on the target task and the
Stagnation Factor for each teacher action.

In these experiments, we compared our LP-SF reward function against the standard reward function
used in the state representation experiments, in which the teacher is rewarded −1 until the student
can solve the target task. To isolate the effects of the reward functions, we used the same state
representations in both settings. In addition, we also compared against two other baselines, random
teacher and no teacher at all. Figure 2 shows the learning curves from both the regular action set
experiment (right) and larger action set experiment (left). We found that in the regular action set
experiment, training the teacher with our LP-SF reward function greatly improves the teacher’s
curriculum over the three baselines. This resultant curriculum allows the student agent to not only
learn faster but to achieve a higher final performance than learning from the other three curricula.
Moreover, for the larger action set experiment, we found that training the teacher with our LP-SF
reward function improves the student’s learning efficiency compared to all baselines, and allows
the student to reach higher final performance than using the standard reward function and using no
teacher at all.

6



Figure 2: Left: Regular Action Set. Right: Larger Action Set. In both experiments, the teacher is
trained with our reward function discussed in 3.2. The resultant curriculum allows for the student to
learn much faster compared with the all baselines.

Our results suggest that by allowing the student to indirectly communicate with the teacher on when
it should receive a new task via the reward function creates for an improved curriculum over the three
baselines.

However, we do observe that the differences in the student’s learning efficiency is not as significant in
the larger action set experiment compared to the regular action set experiment. We hypothesize that
the current reward design can be affected by the size of the teacher’s action space. More specifically,
if the teacher’s action set consists of several sub-tasks that may be ‘easy’ but not necessary for the
student to learn in order to improve learning on the target task. In the LP-SF reward function, the
teacher is always incentivised for proposing easier tasks first (i.e tasks for which the student can make
progress). Therefore, this can possibly delay the teacher from selecting a harder task, which may
reduce the overall learning efficiency of the student. In future work, we aim to explore adaptations to
the reward design that alleviate this issue.

As for the teacher’s curricula that emerged, we observed the general pattern of the teacher selecting
easier tasks, followed by harder tasks. Due to the nature of the reward function, the teacher is
encouraged to select tasks for which the student is making progress. At the start of learning, the
student has limited skills, therefore it makes more progress on easier tasks. However, once the student
has successfully learned the easier tasks, its performance plateaus and its learning progress goes to 0,
so the teacher is encouraged to select gradually more difficult tasks for which it can make progress.

In addition, we also observed that once the student has successfully learned the target task, the teacher
begins to “randomly” sample amongst all tasks. By this point in student training, the student can
solve all tasks, therefore the teacher is rewarded similarly for any proposed task. This would result in
all teacher actions having similar action-values.

Figure 3: Four Rooms MDP, comparing state representations that do not encode the student trajectory.
Left: The returns achieved by the teacher (evaluated in the environment) during offline learning.
Right: The returns achieved by the student using a fully trained teacher. Default and Return are tied
at the bottom, Random and Student-Q are tied in the middle.

7



Figure 4: Four Rooms MDP, comparing state representations that learn different encodings of the
student’s trajectory Left: The returns achieved by the teacher (evaluated in the environment) during
offline learning. Right: The returns achieved by the student using a fully trained teacher.

5.2 State Representation Experiments

We investigate two classes of state representations: those that do and do not use a trajectory encoder.
For the state representation experiments, we first show the performance amongst state representations
that do not encode the trajectory. As discussed in 3.1, we introduce Student-π and compare it against
Student-Q. We also compare it to a naive heuristic that only looks at the last teacher’s action and the
sum of reward along the trajectory that the student accrued in that task (denoted as the “Return” state
representation).

For the non-encoding state representations in Figure 3 (left), we find strong evidence that the Student-
π state representation is strictly better than the Student-Q representation. This confirms our hypothesis
that only the relative magnitude of action-values is pertinent to predicting the student’s task. Referring
now to 3 (right), we see that Student-Q is able to match the random teacher policy, but not improve
over it. We also find that the “Return” state representation is not expressive enough for the teacher to
direct the student, and does much worse than random.

Turning to the encoding state representations in Figure 4 (left), we find that the encoding architectures
that use the policy (Encode-π) performs significantly better than the other state representations. The
state representation that uses actions (Encode-Action) is able to improve over the random teacher. The
reason that Encode-π is superior to Encode-Action is because Encode-Action encodes exploratory
actions, which the agent will likely not repeat. The poor performance of Encode-Q can be attributed
to the same problem of the Student-Q state representation, only exacerbated by the fact that Encode-Q
can only use local Q-values for the states in the trajectory. Comparing the results in Figure 3 and
Figure 4, we find that both Encode-π and Encode-Action are close to the ideal of Student-π, while
only using local information from the trajectory. This demonstrates the importance of incorporating
policy information at a local and global level to represent the state of the student agent.

6 Discussion

For future work, we want to consider adaptations to the reward design which allow for better guidance
from the student. In the current design, the teacher is discouraged from selecting tasks for which
the student’s performance has plateaued. However, the teacher does not receive information on
why the student’s performance has plateaued. Therefore, the teacher is unable to determine whether
the previous task was too easy or too hard. In future work, we want to consider adaptations that
differentiate between these cases. This can allow the teacher to make more informed decisions on
which tasks will result in the most efficient learning for the student. There is also much room for
innovation in the encoding architecture. In addition, we would like a better understanding of the
learning dynamics for the encoder in conjunction with bootstrapping and the use of target networks.

In this paper, we have investigated reward design and state representation in student-teacher cur-
riculum learning. For reward design, we have demonstrated empirically that by tuning the reward
based on learning progress improves curriculum learning by promoting credit assignment. For state
representation, we have conjectured that the tabular greedy policy is an optimal representation for the
teacher’s MDP, and this has been verified in our experiments. Our experiments also show that it is
possible to approximate this representation by encoding the trajectory. These findings suggest that a
general framework for reinforcement teaching can increase the sample efficiency of reinforcement
learning.

8



References
[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on

offline reinforcement learning. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 104–114. PMLR, 2020.

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41–48,
2009.

[3] Jeffrey L Elman. Learning and development in neural networks: The importance of starting
small. Cognition, 48(1):71–99, 1993.

[4] Francesco Faccio, Louis Kirsch, and Jürgen Schmidhuber. Parameter-based value functions.
arXiv:2006.09226, 2020.

[5] Anestis Fachantidis, Matthew Taylor, and I. Vlahavas. Learning to teach reinforcement learning
agents. Machine Learning and Knowledge Extraction, 1, March 2019.

[6] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. arXiv:1705.06366, 2017.

[7] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. arXiv:1707.05300, 2017.

[8] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv:2106.06860, 2021.

[9] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv:1406.2661,
2014.

[10] Alex Graves, Marc G. Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu.
Automated curriculum learning for neural networks. arXiv:1704.03003, 2017.

[11] Jean Harb, Tom Schaul, Doina Precup, and Pierre-Luc Bacon. Policy evaluation networks.
arXiv:2002.11833, 2020.

[12] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

[13] T. Lattimore and C. Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

[14] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum
learning. arXiv:1707.00183, 2017.

[15] Bhairav Mehta, Tristan Deleu, Sharath Chandra Raparthy, Chris J. Pal, and Liam Paull. Curricu-
lum in gradient-based meta-reinforcement learning. arXiv:2002.07956, 2020.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv:1312.5602, 2013.

[17] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter
Stone. Curriculum learning for reinforcement learning domains: A framework and survey.
arXiv:2003.04960, 2020.

[18] Sanmit Narvekar, Jivko Sinapov, and Peter Stone. Autonomous task sequencing for customized
curriculum design in reinforcement learning. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, pages 2536–2542, 2017.

9



[19] Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning.
arXiv:1812.00285, 2018.

[20] Sanmit Narvekar and Peter Stone. Generalizing curricula for reinforcement learning. 2020.

[21] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V. Hafner. Intrinsic motivation systems for
autonomous mental development. IEEE Transactions on Evolutionary Computation, 11(2):265–
286, 2007.

[22] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep rl in continuously parameterized environments. arXiv:1910.07224,
2019.

[23] Sebastien Racaniere, Andrew K. Lampinen, Adam Santoro, David P. Reichert, Vlad Firoiu, and
Timothy P. Lillicrap. Automated curricula through setter-solver interactions. arXiv:1909.12892,
2019.

[24] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural
reinforcement learning method. In European Conference on Machine Learning, pages 317–328.
Springer, 2005.

[25] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. arXiv:1712.01815, 2017.

[26] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press, 2018.

[27] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv:1911.11361, 2019.

[28] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv:2005.13239,
2020.

10


	Introduction
	Background
	The Teacher's MDP
	State Representation
	Designing the Reward Function

	Learning Offline in a Teacher's MDP
	Learning a curriculum offline
	Learning a state representation

	Experiments
	Reward Design Experiments
	State Representation Experiments

	Discussion

