Current Project

Training Agents with Discrete Human Feedback

In this project, we consider the problem of a human trainer teaching an agent via providing positive or negative feedback. Most existing work has treated human feedback as a numerical value that the agent seeks to maximize, and has assumed that all trainers will give feedback in the same way when teaching the same behavior.

In contrast, we treat the feedback as a human-delivered discrete communication between trainers and learners and different training strategies will be chosen by them. We propose a probabilistic model to classify different training strategies. We also present the SABL and I-SABL algorithms, which consider multiple interpretations of trainer feedback in order to learn behaviors more efficiently. Our online user studies show that human trainers follow various training strategies when teaching virtual agents and explicitly considering trainer strategy can allow a learner to make inferences from cases where no feedback is given.

Representative papers: (MacGlashan et al., 2017) (Peng et al., 2016) (Loftin et al., 2015)